Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BJU Int ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38961742

RESUMO

OBJECTIVES: To evaluate a cancer detecting artificial intelligence (AI) algorithm on serial biopsies in patients with prostate cancer on active surveillance (AS). PATIENTS AND METHODS: A total of 180 patients in the Prostate Cancer Research International Active Surveillance (PRIAS) cohort were prospectively monitored using pre-defined criteria. Diagnostic and re-biopsy slides from 2011 to 2020 (n = 4744) were scanned and analysed by an in-house AI-based cancer detection algorithm. The algorithm was analysed for sensitivity, specificity, and for accuracy to predict need for active treatment. Prognostic properties of cancer size, prostate-specific antigen (PSA) level and PSA density at diagnosis were evaluated. RESULTS: The sensitivity and specificity of the AI algorithm was 0.96 and 0.73, respectively, for correct detection of cancer areas. Original pathology report diagnosis was used as the reference method. The area of cancer estimated by the pathologists correlated highly with the AI detected cancer size (r = 0.83). By using the AI algorithm, 63% of the slides would not need to be read by a pathologist as they were classed as benign, at the risk of missing 0.55% slides containing cancer. Biopsy cancer content and PSA density at diagnosis were found to be prognostic of whether the patient stayed on AS or was discontinued for active treatment. CONCLUSION: The AI-based biopsy cancer detection algorithm could be used to reduce the pathologists' workload in an AS cohort. The detected cancer amount correlated well with the cancer length measured by the pathologist and the algorithm performed well in finding even small areas of cancer. To our knowledge, this is the first report on an AI-based algorithm in digital pathology used to detect cancer in a cohort of patients on AS.

2.
J Nucl Cardiol ; 30(1): 116-126, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35610536

RESUMO

PURPOSE: Evaluate the prediction of quantitative coronary angiography (QCA) values from MPI, by means of deep learning. METHODS: 546 patients (67% men) undergoing stress 99mTc-tetrofosmin MPI in a CZT camera in the upright and supine position were included (1092 MPIs). Patients were divided into two groups: ICA group included 271 patients who performed an ICA within 6 months of MPI and a control group with 275 patients with low pre-test probability for CAD and a normal MPI. QCA analyses were performed using radiologic software and verified by an expert reader. Left ventricular myocardium was segmented using clinical nuclear cardiology software and verified by an expert reader. A deep learning model was trained using a double cross-validation scheme such that all data could be used as test data as well. RESULTS: Area under the receiver-operating characteristic curve for the prediction of QCA, with > 50% narrowing of the artery, by deep learning for the external test cohort: per patient 85% [95% confidence interval (CI) 84%-87%] and per vessel; LAD 74% (CI 72%-76%), RCA 85% (CI 83%-86%), LCx 81% (CI 78%-84%), and average 80% (CI 77%-83%). CONCLUSION: Deep learning can predict the presence of different QCA percentages of coronary artery stenosis from MPIs.


Assuntos
Doença da Artéria Coronariana , Estenose Coronária , Aprendizado Profundo , Imagem de Perfusão do Miocárdio , Masculino , Humanos , Feminino , Angiografia Coronária/métodos , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Imagem de Perfusão do Miocárdio/métodos , Perfusão , Cádmio , Telúrio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...