Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Spectrosc ; 71(12): 2707-2713, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28862018

RESUMO

We demonstrate the quantitative capabilities of Raman confocal microscopy as a nondestructive method to measure the partial pressure of molecular gases in mm3 range sealed volume having an optical access. Thanks to a calibration procedure, we apply this technique for the characterization of the absolute nitrogen partial pressure inside buffered micro electromechanical system (MEMS) atomic vapor cells developed for atomic clocks. Our results are compared with measurements obtained by rubidium hyperfine frequency spectroscopy and a good agreement is demonstrated between the two methods, with a three-sigma detection limit below 10 mbar for a 1 h integration time, using a 33 mW 532 nm excitation laser. These results prove the potential of confocal micro-Raman spectroscopy as a simple and nondestructive method for small-scale pressure measurements.

2.
Opt Express ; 25(3): 2187-2194, 2017 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-29519066

RESUMO

Micro-fabricated (MEMS) alkali vapor cells are at the heart of the miniaturization of atomic devices such as atomic magnetometers, atomic gyroscopes and atomic clocks. Among the different techniques used to fill microfabricated alkali vapor cell, UV decomposition of rubidium azide (RbN3) into metallic Rb and nitrogen in Al2O3 coated cells is a very promising approach for low-cost wafer-level fabrication. Here we present a detailed lifetime study of such cells. The rubidium consumption being the main identified cell failure mode, it is monitored with an novel image analysis technique and with high temperature long term aging tests.

3.
ACS Appl Mater Interfaces ; 5(9): 3581-6, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23578059

RESUMO

Nanoparticles (NPs) are being used or explored for the development of biomedical applications in diagnosis and therapy, including imaging and drug delivery. Therefore, reliable tools are needed to study the behavior of NPs in biological environment, in particular the transport of NPs across biological barriers, including the blood-brain tumor barrier (BBTB), a challenging question. Previous studies have addressed the translocation of NPs of various compositions across cell layers, mostly using only one type of cells. Using a coculture model of the human BBTB, consisting in human cerebral endothelial cells preloaded with ultrasmall superparamagnetic iron oxide nanoparticles (USPIO NPs) and unloaded human glioblastoma cells grown on each side of newly developed ultrathin permeable silicon nitride supports as a model of the human BBTB, we demonstrate for the first time the transfer of USPIO NPs from human brain-derived endothelial cells to glioblastoma cells. The reduced thickness of the permeable mechanical support compares better than commercially available polymeric supports to the thickness of the basement membrane of the cerebral vascular system. These results are the first report supporting the possibility that USPIO NPs could be directly transferred from endothelial cells to glioblastoma cells across a BBTB. Thus, the use of such ultrathin porous supports provides a new in vitro approach to study the delivery of nanotherapeutics to brain cancers. Our results also suggest a novel possibility for nanoparticles to deliver therapeutics to the brain using endothelial to neural cells transfer.


Assuntos
Barreira Hematoencefálica/metabolismo , Encéfalo/citologia , Encéfalo/metabolismo , Células Endoteliais/metabolismo , Óxido Ferroso-Férrico/farmacocinética , Glioblastoma/metabolismo , Nanopartículas de Magnetita/química , Transporte Biológico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , DNA/metabolismo , Células Endoteliais/química , Células Endoteliais/citologia , Óxido Ferroso-Férrico/administração & dosagem , Óxido Ferroso-Férrico/química , Glioblastoma/química , Humanos , Nanopartículas de Magnetita/administração & dosagem , Modelos Biológicos , Compostos de Silício
4.
J Mol Recognit ; 24(3): 446-52, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21504022

RESUMO

Atomic force microscopy (AFM) investigations of living cells provide new information in both biology and medicine. However, slow cell dynamics and the need for statistically significant sample sizes mean that data collection can be an extremely lengthy process. We address this problem by parallelizing AFM experiments using a two-dimensional cantilever array, instead of a single cantilever. We have developed an instrument able to operate a two-dimensional cantilever array, to perform topographical and mechanical investigations in both air and liquid. Deflection readout for all cantilevers of the probe array is performed in parallel and online by interferometry. Probe arrays were microfabricated in silicon nitride. Proof-of-concept has been demonstrated by analyzing the topography of hard surfaces and fixed cells in parallel, and by performing parallel force spectroscopy on living cells. These results open new research opportunities in cell biology by measuring the adhesion and elastic properties of a large number of cells. Both properties are essential parameters for research in metastatic cancer development.


Assuntos
Microscopia de Força Atômica/métodos , Fenômenos Biomecânicos , Adesão Celular/fisiologia , Biologia Celular
5.
Opt Lett ; 29(13): 1437-9, 2004 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-15259705

RESUMO

We present a lamellar grating interferometer realized with microelectromechanical system technology. It is used as a time-scanning Fourier-transform spectrometer. The motion is carried out by an electrostatic comb drive actuator fabricated by silicon micromachining, particularly by silicon-on-insulator technology. For the first time to our knowledge, we measure the spectrum of an extended white-light source with a resolution of 1.6 nm at a wavelength of 400 nm and of 5.5 nm at 800 nm. The wavelength accuracy is better than 0.5 nm, and the inspected wavelength range extends from 380 to 1100 nm. The optical path difference maximum is 145 microm. The dimensions of the device are 5 mm x 5 mm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...