Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Nat Commun ; 15(1): 8029, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39271666

RESUMO

The genetic factors of stroke in South Asians are largely unexplored. Exome-wide sequencing and association analysis (ExWAS) in 75 K Pakistanis identified NM_000435.3(NOTCH3):c.3691 C > T, encoding the missense amino acid substitution p.Arg1231Cys, enriched in South Asians (alternate allele frequency = 0.58% compared to 0.019% in Western Europeans), and associated with subcortical hemorrhagic stroke [odds ratio (OR) = 3.39, 95% confidence interval (CI) = [2.26, 5.10], p = 3.87 × 10-9), and all strokes (OR [CI] = 2.30 [1.77, 3.01], p = 7.79 × 10-10). NOTCH3 p.Arg231Cys was strongly associated with white matter hyperintensity on MRI in United Kingdom Biobank (UKB) participants (effect [95% CI] in SD units = 1.1 [0.61, 1.5], p = 3.0 × 10-6). The variant is attributable for approximately 2.0% of hemorrhagic strokes and 1.1% of all strokes in South Asians. These findings highlight the value of diversity in genetic studies and have major implications for genomic medicine and therapeutic development in South Asian populations.


Assuntos
Predisposição Genética para Doença , Receptor Notch3 , Acidente Vascular Cerebral , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Sequenciamento do Exoma , Frequência do Gene , Imageamento por Ressonância Magnética , Mutação de Sentido Incorreto , Paquistão/etnologia , Polimorfismo de Nucleotídeo Único , Receptor Notch3/genética , População do Sul da Ásia/genética , Acidente Vascular Cerebral/genética , Reino Unido/epidemiologia , Biobanco do Reino Unido
2.
Nat Genet ; 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39322778

RESUMO

Whole-genome sequencing (WGS), whole-exome sequencing (WES) and array genotyping with imputation (IMP) are common strategies for assessing genetic variation and its association with medically relevant phenotypes. To date, there has been no systematic empirical assessment of the yield of these approaches when applied to hundreds of thousands of samples to enable the discovery of complex trait genetic signals. Using data for 100 complex traits from 149,195 individuals in the UK Biobank, we systematically compare the relative yield of these strategies in genetic association studies. We find that WGS and WES combined with arrays and imputation (WES + IMP) have the largest association yield. Although WGS results in an approximately fivefold increase in the total number of assayed variants over WES + IMP, the number of detected signals differed by only 1% for both single-variant and gene-based association analyses. Given that WES + IMP typically results in savings of lab and computational time and resources expended per sample, we evaluate the potential benefits of applying WES + IMP to larger samples. When we extend our WES + IMP analyses to 468,169 UK Biobank individuals, we observe an approximately fourfold increase in association signals with the threefold increase in sample size. We conclude that prioritizing WES + IMP and large sample sizes rather than contemporary short-read WGS alternatives will maximize the number of discoveries in genetic association studies.

3.
Artigo em Inglês | MEDLINE | ID: mdl-39137152

RESUMO

CONTEXT: Peptidylglycine-α-amidating monooxygenase (PAM) is a critical enzyme in the endocrine system responsible for activation, by amidation, of bioactive peptides. OBJECTIVE: To define the clinical phenotype of carriers of genetic mutations associated with impaired PAM-amidating activity (PAM-AMA). DESIGN: We used genetic and phenotypic data from cohort studies: the Malmö Diet and Cancer (MDC; 1991-1996; reexamination in 2002-2012), the Malmö Preventive Project (MPP; 2002-2006), and the UK Biobank (UKB; 2012). SETTING: Exome-wide association analysis was used to identify loss-of-function (LoF) variants associated with reduced PAM-AMA and subsequently used for association with the outcomes. PATIENTS OR OTHER PARTICIPANTS: This study included n∼4500 participants from a subcohort of the MDC (MDC-Cardiovascular cohort), n∼4500 from MPP, and n∼300,000 from UKB. MAIN OUTCOME MEASURES: Endocrine-metabolic traits suggested by prior literature, muscle mass, muscle function, and sarcopenia. RESULTS: Two LoF variants in the PAM gene, Ser539Trp (minor allele frequency: 0.7%) and Asp563Gly (5%), independently contributed to a decrease of 2.33 [95% confidence interval (CI): 2.52/2.15; P = 2.5E-140] and 0.98 (1.04/0.92; P = 1.12E-225) SD units of PAM-AMA, respectively. The cumulative effect of the LoF was associated with diabetes, reduced insulin secretion, and higher levels of GH and IGF-1. Moreover, carriers had reduced muscle mass and function, followed by a higher risk of sarcopenia. Indeed, the Ser539Trp mutation increased the risk of sarcopenia by 30% (odds ratio 1.31; 95% CI: 1.16/1.47; P = 9.8E-06), independently of age and diabetes. CONCLUSION: PAM-AMA genetic deficiency results in a prediabetic sarcopenic phenotype. Early identification of PAM LoF carriers would allow targeted exercise interventions and calls for novel therapies that restore enzymatic activity.

4.
Nat Genet ; 56(8): 1592-1596, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39103650

RESUMO

Coronavirus disease 2019 (COVID-19) and influenza are respiratory illnesses caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza viruses, respectively. Both diseases share symptoms and clinical risk factors1, but the extent to which these conditions have a common genetic etiology is unknown. This is partly because host genetic risk factors are well characterized for COVID-19 but not for influenza, with the largest published genome-wide association studies for these conditions including >2 million individuals2 and about 1,000 individuals3-6, respectively. Shared genetic risk factors could point to targets to prevent or treat both infections. Through a genetic study of 18,334 cases with a positive test for influenza and 276,295 controls, we show that published COVID-19 risk variants are not associated with influenza. Furthermore, we discovered and replicated an association between influenza infection and noncoding variants in B3GALT5 and ST6GAL1, neither of which was associated with COVID-19. In vitro small interfering RNA knockdown of ST6GAL1-an enzyme that adds sialic acid to the cell surface, which is used for viral entry-reduced influenza infectivity by 57%. These results mirror the observation that variants that downregulate ACE2, the SARS-CoV-2 receptor, protect against COVID-19 (ref. 7). Collectively, these findings highlight downregulation of key cell surface receptors used for viral entry as treatment opportunities to prevent COVID-19 and influenza.


Assuntos
COVID-19 , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Influenza Humana , SARS-CoV-2 , Humanos , Influenza Humana/genética , Influenza Humana/epidemiologia , Influenza Humana/virologia , COVID-19/genética , COVID-19/virologia , Fatores de Risco , SARS-CoV-2/genética , Masculino , Feminino , Polimorfismo de Nucleotídeo Único , Estudos de Casos e Controles , Pessoa de Meia-Idade
5.
Nature ; 631(8021): 583-592, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38768635

RESUMO

Rare coding variants that substantially affect function provide insights into the biology of a gene1-3. However, ascertaining the frequency of such variants requires large sample sizes4-8. Here we present a catalogue of human protein-coding variation, derived from exome sequencing of 983,578 individuals across diverse populations. In total, 23% of the Regeneron Genetics Center Million Exome (RGC-ME) data come from individuals of African, East Asian, Indigenous American, Middle Eastern and South Asian ancestry. The catalogue includes more than 10.4 million missense and 1.1 million predicted loss-of-function (pLOF) variants. We identify individuals with rare biallelic pLOF variants in 4,848 genes, 1,751 of which have not been previously reported. From precise quantitative estimates of selection against heterozygous loss of function (LOF), we identify 3,988 LOF-intolerant genes, including 86 that were previously assessed as tolerant and 1,153 that lack established disease annotation. We also define regions of missense depletion at high resolution. Notably, 1,482 genes have regions that are depleted of missense variants despite being tolerant of pLOF variants. Finally, we estimate that 3% of individuals have a clinically actionable genetic variant, and that 11,773 variants reported in ClinVar with unknown significance are likely to be deleterious cryptic splice sites. To facilitate variant interpretation and genetics-informed precision medicine, we make this resource of coding variation from the RGC-ME dataset publicly accessible through a variant allele frequency browser.


Assuntos
Exoma , Variação Genética , Proteínas , Humanos , Alelos , Exoma/genética , Sequenciamento do Exoma , Frequência do Gene , Variação Genética/genética , Heterozigoto , Mutação com Perda de Função/genética , Mutação de Sentido Incorreto/genética , Fases de Leitura Aberta/genética , Proteínas/genética , Sítios de Splice de RNA/genética , Medicina de Precisão
7.
Nature ; 622(7984): 784-793, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37821707

RESUMO

The Mexico City Prospective Study is a prospective cohort of more than 150,000 adults recruited two decades ago from the urban districts of Coyoacán and Iztapalapa in Mexico City1. Here we generated genotype and exome-sequencing data for all individuals and whole-genome sequencing data for 9,950 selected individuals. We describe high levels of relatedness and substantial heterogeneity in ancestry composition across individuals. Most sequenced individuals had admixed Indigenous American, European and African ancestry, with extensive admixture from Indigenous populations in central, southern and southeastern Mexico. Indigenous Mexican segments of the genome had lower levels of coding variation but an excess of homozygous loss-of-function variants compared with segments of African and European origin. We estimated ancestry-specific allele frequencies at 142 million genomic variants, with an effective sample size of 91,856 for Indigenous Mexican ancestry at exome variants, all available through a public browser. Using whole-genome sequencing, we developed an imputation reference panel that outperforms existing panels at common variants in individuals with high proportions of central, southern and southeastern Indigenous Mexican ancestry. Our work illustrates the value of genetic studies in diverse populations and provides foundational imputation and allele frequency resources for future genetic studies in Mexico and in the United States, where the Hispanic/Latino population is predominantly of Mexican descent.


Assuntos
Sequenciamento do Exoma , Genoma Humano , Genótipo , Hispânico ou Latino , Adulto , Humanos , África/etnologia , América/etnologia , Europa (Continente)/etnologia , Frequência do Gene/genética , Genética Populacional , Genoma Humano/genética , Técnicas de Genotipagem , Hispânico ou Latino/genética , Homozigoto , Mutação com Perda de Função/genética , México , Estudos Prospectivos
8.
Nat Genet ; 55(8): 1277-1287, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37558884

RESUMO

In this study, we leveraged the combined evidence of rare coding variants and common alleles to identify therapeutic targets for osteoporosis. We undertook a large-scale multiancestry exome-wide association study for estimated bone mineral density, which showed that the burden of rare coding alleles in 19 genes was associated with estimated bone mineral density (P < 3.6 × 10-7). These genes were highly enriched for a set of known causal genes for osteoporosis (65-fold; P = 2.5 × 10-5). Exome-wide significant genes had 96-fold increased odds of being the top ranked effector gene at a given GWAS locus (P = 1.8 × 10-10). By integrating proteomics Mendelian randomization evidence, we prioritized CD109 (cluster of differentiation 109) as a gene for which heterozygous loss of function is associated with higher bone density. CRISPR-Cas9 editing of CD109 in SaOS-2 osteoblast-like cell lines showed that partial CD109 knockdown led to increased mineralization. This study demonstrates that the convergence of common and rare variants, proteomics and CRISPR can highlight new bone biology to guide therapeutic development.


Assuntos
Predisposição Genética para Doença , Osteoporose , Humanos , Sequenciamento do Exoma , Osteoporose/genética , Densidade Óssea/genética , Alelos , Fatores de Transcrição/genética , Estudo de Associação Genômica Ampla
9.
bioRxiv ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37214792

RESUMO

Coding variants that have significant impact on function can provide insights into the biology of a gene but are typically rare in the population. Identifying and ascertaining the frequency of such rare variants requires very large sample sizes. Here, we present the largest catalog of human protein-coding variation to date, derived from exome sequencing of 985,830 individuals of diverse ancestry to serve as a rich resource for studying rare coding variants. Individuals of African, Admixed American, East Asian, Middle Eastern, and South Asian ancestry account for 20% of this Exome dataset. Our catalog of variants includes approximately 10.5 million missense (54% novel) and 1.1 million predicted loss-of-function (pLOF) variants (65% novel, 53% observed only once). We identified individuals with rare homozygous pLOF variants in 4,874 genes, and for 1,838 of these this work is the first to document at least one pLOF homozygote. Additional insights from the RGC-ME dataset include 1) improved estimates of selection against heterozygous loss-of-function and identification of 3,459 genes intolerant to loss-of-function, 83 of which were previously assessed as tolerant to loss-of-function and 1,241 that lack disease annotations; 2) identification of regions depleted of missense variation in 457 genes that are tolerant to loss-of-function; 3) functional interpretation for 10,708 variants of unknown or conflicting significance reported in ClinVar as cryptic splice sites using splicing score thresholds based on empirical variant deleteriousness scores derived from RGC-ME; and 4) an observation that approximately 3% of sequenced individuals carry a clinically actionable genetic variant in the ACMG SF 3.1 list of genes. We make this important resource of coding variation available to the public through a variant allele frequency browser. We anticipate that this report and the RGC-ME dataset will serve as a valuable reference for understanding rare coding variation and help advance precision medicine efforts.

11.
J Infect Dis ; 227(5): 663-674, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36408616

RESUMO

BACKGROUND: The impact variant-specific immune evasion and waning protection have on declining coronavirus disease 2019 (COVID-19) vaccine effectiveness (VE) remains unclear. Using whole-genome sequencing (WGS), we examined the contribution these factors had on the decline that followed the introduction of the Delta variant. Furthermore, we evaluated calendar-period-based classification as a WGS alternative. METHODS: We conducted a test-negative case-control study among people tested for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) between 1 April and 24 August 2021. Variants were classified using WGS and calendar period. RESULTS: We included 2029 cases (positive, sequenced samples) and 343 727 controls (negative tests). VE 14-89 days after second dose was significantly higher against Alpha (84.4%; 95% confidence interval [CI], 75.6%-90.0%) than Delta infection (68.9%; 95% CI, 58.0%-77.1%). The odds of Delta infection were significantly higher 90-149 than 14-89 days after second dose (P value = .003). Calendar-period-classified VE estimates approximated WGS-classified estimates; however, calendar-period-based classification was subject to misclassification (35% Alpha, 4% Delta). CONCLUSIONS: Both waning protection and variant-specific immune evasion contributed to the lower effectiveness. While calendar-period-classified VE estimates mirrored WGS-classified estimates, our analysis highlights the need for WGS when variants are cocirculating and misclassification is likely.


Assuntos
COVID-19 , Hepatite D , Humanos , Vacinas contra COVID-19 , Estudos de Casos e Controles , Evasão da Resposta Imune , SARS-CoV-2 , Eficácia de Vacinas
12.
Drug Alcohol Depend ; 243: 109735, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36549228

RESUMO

BACKGROUND: Cue-exposure therapy (CET) is an effective approach for anxiety-related disorders, but its effectiveness for substance use disorders is less clear. One potential means of improving CET outcomes is to include a cognitive-enhancing pharmacotherapy. This study evaluated d-cycloserine (DCS) and RY-023, putative cognitive enhancers targeting glutamate and GABA systems, respectively, in a monkey model of CET for alcohol use disorder. METHODS: Male rhesus monkeys (n = 4) underwent multiple cycles of the CET procedure. During baseline (Phase 1), monkeys self-administered an ethanol solution under a fixed-ratio schedule and limited access conditions such that every 5th response in a 3-h session resulted in 30-s access to a drinking spout and a change in ethanol-paired cue lights from white to red. Behavior then was extinguished (Phase 2) by omitting the ethanol solution yet retaining the ethanol-paired stimulus lights. Monkeys also received injections of vehicle, DCS (3 mg/kg), a partial agonist at the glycine modulatory site on glutamatergic NMDA receptors, or the α5GABAA receptor-selective inverse agonist RY-023 (0.03 or 0.3 mg/kg). Once responding declined, monkeys underwent a cue reactivity test (Phase 3), and then returned to self-administration the following day to assess reacquisition (Phase 4). RESULTS: Through multiple cycles, self-administration remained stable. Compared to vehicle, DCS facilitated extinction of ethanol seeking (Phase 2) and delayed reacquisition of ethanol self-administration (Phase 4). In contrast, RY-023 facilitated extinction (Phase 2) and reduced cue reactivity (Phase 3). CONCLUSIONS: Adjunctive pharmacotherapy can improve CET outcomes, but the choice of pharmacotherapy should be dependent on the outcome of interest.


Assuntos
Alcoolismo , Terapia Implosiva , Nootrópicos , Animais , Masculino , Alcoolismo/tratamento farmacológico , Alcoolismo/psicologia , Macaca mulatta , Nootrópicos/farmacologia , Nootrópicos/uso terapêutico , Sinais (Psicologia) , Agonismo Inverso de Drogas , Extinção Psicológica , Ciclosserina/farmacologia , Ciclosserina/uso terapêutico , Etanol/farmacologia , Autoadministração
13.
Nature ; 612(7939): 301-309, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36450978

RESUMO

Clonal haematopoiesis involves the expansion of certain blood cell lineages and has been associated with ageing and adverse health outcomes1-5. Here we use exome sequence data on 628,388 individuals to identify 40,208 carriers of clonal haematopoiesis of indeterminate potential (CHIP). Using genome-wide and exome-wide association analyses, we identify 24 loci (21 of which are novel) where germline genetic variation influences predisposition to CHIP, including missense variants in the lymphocytic antigen coding gene LY75, which are associated with reduced incidence of CHIP. We also identify novel rare variant associations with clonal haematopoiesis and telomere length. Analysis of 5,041 health traits from the UK Biobank (UKB) found relationships between CHIP and severe COVID-19 outcomes, cardiovascular disease, haematologic traits, malignancy, smoking, obesity, infection and all-cause mortality. Longitudinal and Mendelian randomization analyses revealed that CHIP is associated with solid cancers, including non-melanoma skin cancer and lung cancer, and that CHIP linked to DNMT3A is associated with the subsequent development of myeloid but not lymphoid leukaemias. Additionally, contrary to previous findings from the initial 50,000 UKB exomes6, our results in the full sample do not support a role for IL-6 inhibition in reducing the risk of cardiovascular disease among CHIP carriers. Our findings demonstrate that CHIP represents a complex set of heterogeneous phenotypes with shared and unique germline genetic causes and varied clinical implications.


Assuntos
COVID-19 , Doenças Cardiovasculares , Humanos , Hematopoiese Clonal/genética , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/genética
14.
N Engl J Med ; 387(4): 332-344, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35939579

RESUMO

BACKGROUND: Exome sequencing in hundreds of thousands of persons may enable the identification of rare protein-coding genetic variants associated with protection from human diseases like liver cirrhosis, providing a strategy for the discovery of new therapeutic targets. METHODS: We performed a multistage exome sequencing and genetic association analysis to identify genes in which rare protein-coding variants were associated with liver phenotypes. We conducted in vitro experiments to further characterize associations. RESULTS: The multistage analysis involved 542,904 persons with available data on liver aminotransferase levels, 24,944 patients with various types of liver disease, and 490,636 controls without liver disease. We found that rare coding variants in APOB, ABCB4, SLC30A10, and TM6SF2 were associated with increased aminotransferase levels and an increased risk of liver disease. We also found that variants in CIDEB, which encodes a structural protein found in hepatic lipid droplets, had a protective effect. The burden of rare predicted loss-of-function variants plus missense variants in CIDEB (combined carrier frequency, 0.7%) was associated with decreased alanine aminotransferase levels (beta per allele, -1.24 U per liter; 95% confidence interval [CI], -1.66 to -0.83; P = 4.8×10-9) and with 33% lower odds of liver disease of any cause (odds ratio per allele, 0.67; 95% CI, 0.57 to 0.79; P = 9.9×10-7). Rare coding variants in CIDEB were associated with a decreased risk of liver disease across different underlying causes and different degrees of severity, including cirrhosis of any cause (odds ratio per allele, 0.50; 95% CI, 0.36 to 0.70). Among 3599 patients who had undergone bariatric surgery, rare coding variants in CIDEB were associated with a decreased nonalcoholic fatty liver disease activity score (beta per allele in score units, -0.98; 95% CI, -1.54 to -0.41 [scores range from 0 to 8, with higher scores indicating more severe disease]). In human hepatoma cell lines challenged with oleate, CIDEB small interfering RNA knockdown prevented the buildup of large lipid droplets. CONCLUSIONS: Rare germline mutations in CIDEB conferred substantial protection from liver disease. (Funded by Regeneron Pharmaceuticals.).


Assuntos
Proteínas Reguladoras de Apoptose , Mutação em Linhagem Germinativa , Hepatopatias , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Predisposição Genética para Doença/genética , Predisposição Genética para Doença/prevenção & controle , Humanos , Fígado/metabolismo , Hepatopatias/genética , Hepatopatias/metabolismo , Hepatopatias/prevenção & controle , Transaminases/genética , Sequenciamento do Exoma
15.
Nat Commun ; 13(1): 4844, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35999217

RESUMO

Body fat distribution is a major, heritable risk factor for cardiometabolic disease, independent of overall adiposity. Using exome-sequencing in 618,375 individuals (including 160,058 non-Europeans) from the UK, Sweden and Mexico, we identify 16 genes associated with fat distribution at exome-wide significance. We show 6-fold larger effect for fat-distribution associated rare coding variants compared with fine-mapped common alleles, enrichment for genes expressed in adipose tissue and causal genes for partial lipodystrophies, and evidence of sex-dimorphism. We describe an association with favorable fat distribution (p = 1.8 × 10-09), favorable metabolic profile and protection from type 2 diabetes (~28% lower odds; p = 0.004) for heterozygous protein-truncating mutations in INHBE, which encodes a circulating growth factor of the activin family, highly and specifically expressed in hepatocytes. Our results suggest that inhibin ßE is a liver-expressed negative regulator of adipose storage whose blockade may be beneficial in fat distribution-associated metabolic disease.


Assuntos
Diabetes Mellitus Tipo 2 , Subunidades beta de Inibinas/genética , Tecido Adiposo , Adiposidade/genética , Diabetes Mellitus Tipo 2/genética , Exoma/genética , Humanos , Mutação
16.
Front Neurosci ; 16: 866971, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464308

RESUMO

Use of amphetamine-type stimulants is associated with numerous adverse health outcomes, with disturbed sleep being one of the most prominent consequences of methamphetamine use. However, the extent to which methamphetamine alters sleep architecture, and whether methamphetamine-induced sleep impairment is associated with next-day sleep rebound effects, has received relatively little investigation. In the present study, we investigated the effects of acute morning methamphetamine administration on sleep parameters in adult male rhesus monkeys (N = 4) using a fully-implantable telemetry system. Monkeys were prepared with telemetry devices that continuously monitored electroencephalography (EEG), electromyography (EMG) and electrooculography (EOG) throughout the night. We investigated the effects of morning (10h00) administration of methamphetamine (0.01-0.3 mg/kg, i.m.) on sleep during the night of the injection. In addition, we investigated sleep during the subsequent night in order to assess the possible emergence of sleep rebound effects. Methamphetamine administration dose-dependently increased sleep latency and wake time after sleep onset (WASO). Methamphetamine also decreased total sleep time, which was reflected by a decrease in total time spent in N2, slow-wave (N3) and REM sleep stages, while increasing the percentage of total sleep time spent in sleep stage N1. Importantly, methamphetamine decreased time spent in N3 and REM sleep even at doses that did not significantly decrease total sleep time. Sleep rebound effects were observed on the second night after methamphetamine administration, with increased total sleep time reflected by a selective increase in time spent in sleep stages N3 and REM, as well as a decrease in REM sleep latency. Our findings show that methamphetamine administered 8 h prior to the inactive (dark) phase induces marked changes in sleep architecture in rhesus monkeys, even at doses that do not change sleep duration, and that sleep rebound effects are observed the following day for both N3 and REM sleep stages.

17.
Nat Genet ; 54(4): 382-392, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35241825

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters human host cells via angiotensin-converting enzyme 2 (ACE2) and causes coronavirus disease 2019 (COVID-19). Here, through a genome-wide association study, we identify a variant (rs190509934, minor allele frequency 0.2-2%) that downregulates ACE2 expression by 37% (P = 2.7 × 10-8) and reduces the risk of SARS-CoV-2 infection by 40% (odds ratio = 0.60, P = 4.5 × 10-13), providing human genetic evidence that ACE2 expression levels influence COVID-19 risk. We also replicate the associations of six previously reported risk variants, of which four were further associated with worse outcomes in individuals infected with the virus (in/near LZTFL1, MHC, DPP9 and IFNAR2). Lastly, we show that common variants define a risk score that is strongly associated with severe disease among cases and modestly improves the prediction of disease severity relative to demographic and clinical factors alone.


Assuntos
COVID-19 , Enzima de Conversão de Angiotensina 2/genética , COVID-19/genética , Estudo de Associação Genômica Ampla , Humanos , Fatores de Risco , SARS-CoV-2/genética
18.
Pharmacogenomics J ; 22(3): 160-165, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35149777

RESUMO

Sarilumab is a human monoclonal antibody against interleukin (IL)-6Rα that has been approved for the treatment of adult patients with moderately to severely active rheumatoid arthritis (RA) and an inadequate response or intolerance to one or more disease-modifying antirheumatic drugs (DMARDs). Mild liver function test abnormalities have been observed in patients treated with sarilumab. We describe a genome-wide association study of bilirubin elevations in RA patients treated with sarilumab. Array genotyping and exome sequencing were performed on DNA samples from 1075 patients. Variants in the UGT1A1 gene were strongly associated with maximum bilirubin elevations in sarilumab-treated patients (rs4148325; p = 2.88 × 10-41) but were not associated with aminotransferase elevations. No other independent loci showed evidence of association with bilirubin elevations after sarilumab treatment. These findings suggest that most bilirubin increases during sarilumab treatment are related to genetic variation in UGT1A1 rather than underlying liver injury.


Assuntos
Antirreumáticos , Artrite Reumatoide , Adulto , Anticorpos Monoclonais Humanizados , Antirreumáticos/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/genética , Bilirrubina/uso terapêutico , Estudo de Associação Genômica Ampla , Glucuronosiltransferase/genética , Humanos , Resultado do Tratamento
19.
J Card Fail ; 28(3): 403-414, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34634447

RESUMO

BACKGROUND: The V122I variant in transthyretin (TTR) is the most common amyloidogenic mutation worldwide. The aim of this study is to describe the cardiac phenotype and risk for adverse cardiovascular outcomes of young V122I TTR carriers in the general population. METHODS AND RESULTS: TTR genotypes were extracted from whole-exome sequence data in participants of the Dallas Heart Study. Participants with African ancestry, available V122I TTR genotypes (N = 1818) and either cardiac magnetic resonance imaging (n = 1364) or long-term follow-up (n = 1532) were included. The prevalence of V122I TTR carriers (45 ± 10 years) was 3.2% (n/N = 59/1818). The V122I TTR carriers had higher baseline left ventricular wall thickness (8.52 ± 1.82 vs 8.21 ± 1.62 mm, adjusted P = .038) than noncarriers, but no differences in other cardiac magnetic resonance imaging measures (P > .05 for all). Although carrier status was not associated with amino terminal pro-B-type natriuretic peptide (NT-proBNP) at baseline (P = .79), V122I TTR carriers had a greater increase in NT-proBNP on follow-up than noncarriers (median 28.5 pg/mL, interquartile range 11.4-104.1 pg/mL vs median 15.9 pg/mL, interquartile range 0.0-43.0 pg/mL, adjusted P = .018). V122I TTR carriers were at a higher adjusted risk of heart failure (hazard ratio 3.82, 95% confidence interval 1.80-8.13, P < .001), cardiovascular death (hazard ratio 2.65, 95% confidence interval 1.14-6.15, P = .023), and all-cause mortality (hazard ratio 1.95, 95% confidence interval 1.08-3.51, P = .026) in comparison with noncarriers. CONCLUSIONS: V122I TTR carrier status was associated with a greater increase in NT-proBNP, slightly greater left ventricular wall thickness, and a higher risk for heart failure, cardiovascular death, and all-cause mortality. These findings suggest the need to develop amyloidosis screening strategies for V122I TTR carriers.


Assuntos
Amiloidose , Insuficiência Cardíaca , Negro ou Afro-Americano/genética , Amiloidose/epidemiologia , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/epidemiologia , Insuficiência Cardíaca/genética , Humanos , Mutação , Pré-Albumina/genética
20.
J Pers Med ; 11(12)2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34945778

RESUMO

Thyroid function has a widespread effect on the cardiometabolic system. However, the causal association between either subclinical hyper- or hypothyroidism and the thyroid hormones with blood pressure (BP) and cardiovascular diseases (CVD) is not clear. We aim to investigate this in a two-sample Mendelian randomization (MR) study. Single nucleotide polymorphisms (SNPs) associated with thyroid-stimulating hormone (TSH), free tetraiodothyronine (FT4), hyper- and hypothyroidism, and anti-thyroid peroxidase antibodies (TPOAb), from genome-wide association studies (GWAS), were selected as MR instrumental variables. SNPs-outcome (BP, CVD) associations were evaluated in a large-scale cohort, the Malmö Diet and Cancer Study (n = 29,298). Causal estimates were computed by inverse-variance weighted (IVW), weighted median, and MR-Egger approaches. Genetically increased levels of TSH were associated with decreased systolic BP and with a lower risk of atrial fibrillation. Hyperthyroidism and TPOAb were associated with a lower risk of atrial fibrillation. Our data support a causal association between genetically decreased levels of TSH and both atrial fibrillation and systolic BP. The lack of significance after Bonferroni correction and the sensitivity analyses suggesting pleiotropy, should prompt us to be cautious in their interpretation. Nevertheless, these findings offer mechanistic insight into the etiology of CVD. Further work into the genes involved in thyroid functions and their relation to cardiovascular outcomes may highlight pathways for targeted intervention.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA