Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 51(17): 6607-6621, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35383786

RESUMO

The oxidation of Sn(II) to the more stable Sn(IV) degrades the photovoltaic perovskite material CsSnI3; however, this problem can be counteracted via alkaline-earth (AE) doping. In this work, the electronic properties of CsSn1-xAExI3, with x = 0 and 0.25, and AE = Mg and Ca, were investigated via Density Functional Theory. It is proven that the synthetic reactions of all these perovskites are thermodynamically viable. Besides, a slight strengthening in the metal-halide bonds is found in the Mg-doped perovskite; consequently, it exhibits the greatest bulk modulus. Nevertheless, the opposite occurrs with the Ca-doped perovskite, which has the smallest bulk modulus due to the weakening of its metal-halide bonds. The calculated bandgaps for CsSnI3, Mg-doped and Ca-doped perovskites are 1.11, 1.32 and 1.55 eV, respectively, remaining remarkably close to the best photovoltaic-performing value for single-junction solar cells of 1.34 eV. Nevertheless, an indirect bandgap was predicted under Mg-doping. These results support the possibility of implementing AE-doped perovskites as absorber materials in single-junction solar cells, which can deliver higher output voltages than that using CsSnI3. Finally, it was found that Sr or Ba doping could result in semiconductors with bandgaps close to 2.0 eV.

2.
J Mol Graph Model ; 93: 107444, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31494534

RESUMO

A zwitterionic-based chemical, the 3,3'-(octadecylamino)dipropionic acid, was quantum-theoretically designed to be applied as a corrosion inhibitor for protecting oxidized iron surfaces against the attack of very corrosive gasolines. Its performance, as well as those of worldwide-employed nitrogen-free carboxylic-diacid-based corrosion inhibitors, were experimentally evaluated and compared. Through Density-Functional-Theory calculations of the molecular interactions of the corrosion inhibitors with an iron-oxide cluster model, along with the experimental corrosion-inhibiting evaluations, it is revealed that the zwitterionic-based chemical substantially overcomes the performance of nitrogen-free chemicals. It is shown by the theoretical results that the two carboxylic heads of either, the zwitterionic-based or the nitrogen-free corrosion inhibitors, reinforce the octahedral coordination around the exposed Fe3+ atom of the iron oxide. Furthermore, when the zwitterionic-based chemical is bonded to the Fe3+ atom, a two-rings chelate is formed, in contrast to the one-ring chelate formed by the nitrogen-free corrosion inhibitors. Finally, it is theoretically predicted that oleic solvents improve the performance of the zwitterionic-based corrosion inhibitor because preclude the steric hindrance of nitrogen.


Assuntos
Corrosão , Compostos Férricos/química , Ferro/química , Modelos Moleculares , Nitrogênio/química , Teoria Quântica , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA