Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Saudi J Biol Sci ; 27(5): 1237-1241, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32346330

RESUMO

Asian citrus psyllid is a most damaging insect pest of citrus. In this field study, the efficacy of seven insecticides (emamectin benzoate, bifenthrin, chlorfenapyr, fipronil, imidacloprid, pyriproxyfen and thiamethoxam) was evaluated against Diaphorina citri Kuwayama in the citrus orchard of Kinnow mandarin, Citrus reticulata Blanco. The insecticides revealed a differential and substantial relative efficacy against D. citri compared to the untreated plants. The insecticidal effect attributed as percent reduction in insect population was more prominent after three days of spray: highest reduction values were recorded with thiamethoxam (50.89%), imidacloprid (44.27%) and bifenthrin (42.94%) after first spray, and thiamethoxam (83.36%), imidacloprid (73.20%) and bifenthrin (72.66%) after second spray. Thus, neonicotinoids (thiamethoxam and imidacloprid) and pyrethroid (bifenthrin) resulted as highly effective against D. citri at three days after both sprays. At seven days, imidacloprid (63.53%) and fipronil (62.47%) presented relatively higher population reduction after first spray, and thiamethoxam (92.66%) and chlorfenapyr (89.59%) after second spray. At 12 days, the insecticidal effect on insect population became significantly at par after each spray except chlorfenapyr that reflected high population reduction (93.17%) only after second spray. It is also obvious from the data that there is need of regular monitoring to suppress the psyllids population below threshold level by timely application of the second insecticidal spray.

2.
Food Sci Nutr ; 8(1): 390-401, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31993165

RESUMO

Honeys originating from Sidr (Ziziphus spina-christi L.) and Talh (Acacia gerrardii Benth.) trees in Saudi Arabia exhibited substantial antimicrobial activity against pathogenic gram-positive bacteria (Bacillus cereus, Staphylococcus aureus), gram-negative bacteria (Escherichia coli, Salmonella enteritidis), and a dermatophytic fungus (Trichophyton mentagrophytes). The diameter of zones of inhibition represents the level of antimicrobial potency of the honey samples. Precisely, Talh honey showed significantly higher antibacterial activity against all tested bacteria than Sidr honey. The antifungal activity of Talh and Sidr honey types was significantly at par against a dermatophytic fungus. The water-diluted honey types (33% w/v) significantly induced a rise in the antimicrobial activity from that of the natural nondiluted honeys. Microbial strains displayed differential sensitivity; gram-positive bacteria were more sensitive and presented larger inhibition zones than gram-negative bacteria and the fungus. The sensitivity was highest in B. cereus and S. aureus, followed by T. mentagrophytes, E. coli, and S. enteritidis. The antimicrobial activity of water-diluted honeys (Sidr and Talh) was high than that of broad-spectrum antibacterial antibiotics (tetracycline and chloramphenicol) against bacterial strains, but these honeys were relativity less potent than antifungal antibiotics (flucoral and mycosat) against a fungal strain. Our findings indicate the antimicrobial potential of Saudi honeys to be considered in honey standards, and their therapeutic use as medical-grade honeys needs further investigations.

3.
Saudi J Biol Sci ; 26(7): 1372-1376, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31762598

RESUMO

Heat stress elicits the expression of heat shock proteins (HSPs) in honey bee subspecies. These highly conserved proteins have significant role in protecting cells from thermal-induced stresses. Honey bees in subtropical regions face extremely dry and hot environment. The expression of HSPs in the nurses and foragers of indigenous (Apis mellifera jemenitica) and imported European (Apis mellifera ligustica and Apis mellifera carnica) honey bee subspecies after heat shock treatment were compared using SDS-PAGE. Hsp70 and Hsp82 were equally expressed in the nurses of all tested bee subspecies when exposed to 40 °C and 45 °C for 4 h. The forager bees exhibited differential expression of HSPs after heat stress. No HSPs was expressed in the foragers of A. m. jemenitica, and Hsp70 was expressed only in the foragers of A. m. ligustica and A. m. carnica at 40 °C. A prominent diversity in HSPs expression was also exhibited in the foragers at 45 °C with one HSP (Hsp70) in A. m. jemenitica, two HSPs (Hsp40 and Hsp70) in A. m. carnica, and three HSPs (Hsp40, Hsp60 and Hsp70) in A. m. ligustica. No HSPs was expressed in the control nurse and forager bees at any of the tested temperatures. These findings illustrated the differences in HSP expression among nurse and forager bees. It is obvious that the native foragers are more heat tolerant with least HSPs expression than exotic bee races. Further investigations will help to understand the potential role of HSPs in the adaptability, survival, and performance of bee subspecies in harsh climate of the subtropical regions.

4.
Saudi J Biol Sci ; 26(3): 563-568, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30899172

RESUMO

Apis mellifera jemenitica is the indigenous race of honey bees in the Arabian Peninsula and is tolerant to local drought conditions. Experiments were undertaken to determine the differences in associative learning and memory of honey bee workers living in the arid zone of Saudi Arabia, utilizing the proboscis extension response (PER). These experiments were conducted on the indigenous race (A. m. jemenitica) along with two introduced European races (A. m. carnica and A. m. ligustica). The data revealed that A. m. jemenitica is amenable to PER conditioning and may be used in conditioning experiments within the olfactory behavioral paradigm. The results also demonstrated that the three races learn and retain information with different capacities relative to each other during the experimental time periods. Native Arabian bees (A. m. jemenitica) exhibited significantly lower PER percentage during second and third conditioning trials when compared to exotic races. Apis mellifera jemenitica also exhibited reduced memory retention at 2 h and 24 h when compared to A. m. carnica and A. m. ligustica. Therefore, the native Arabian bees were relatively slow learners with reduced memory retention compared to the other two races that showed similar learning and memory retention. Three or five conditioning trials and monthly weather conditions (October and December) had no significant effects on learning and memory in A. m. jemenitica. These results emphasized a novel line of research to explore the mechanism and differences in associative learning as well as other forms of learning throughout the year among bee races in the harsh arid conditions of Saudi Arabia. This is the first study in Saudi Arabia to demonstrate inter-race differences regarding olfactory associative learning between native Arabian bees and two introduced European honey bee races.

5.
J Econ Entomol ; 112(3): 1032-1042, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-30753534

RESUMO

Remote sensing (RS) and geographical information system (GIS) technology have seldom been used in apiculture. We applied these tools to map the optimum honey bee colony carrying capacity and estimate honey production during the honey flow of 'Talh' trees (Acacia gerrardii Benth. [Fabaceae: Mimosoideae]) in the Rawdat-Khuraim oasis, central Saudi Arabia . A SPOT 5 panchromatic image (2.5-m resolution) was used to delineate the distribution of Talh trees. ArcGIS was used in image processing and data management, analysis, and visualization. The outputs were maps of Talh distribution, an optimum spatiotemporal beekeeping plan, and predicted potential honey yield. Each Talh tree was predicted to produce a theoretical maximum of 8.5-kg Talh honey per season. Under the current nonoptimum distribution of apiaries, Rawdat-Khuraim produces 4,876-kg honey per season. Optimally, it should produce 9,619-kg honey per season from 1,278 colonies distributed in 12 beekeeping sites. This study provides a technical approach for the use of RS and GIS in describing, planning, and managing honey flows and predicting honey harvest through a spatiotemporal workflow.


Assuntos
Criação de Abelhas , Mel , Animais , Abelhas , Ecossistema , Sistemas de Informação Geográfica , Arábia Saudita
6.
Saudi J Biol Sci ; 25(6): 1122-1127, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30174511

RESUMO

Dusky cotton bug (Oxycarenus spp.) has become a major insect pest for cotton crop in Pakistan. Transgenic cotton varieties provided resistance to a variety of insects pests. But, these are not safe for this emerging potential threat. In present study, nine transgenic cotton varieties (IUB-222, MNH-886, FH-142, CIM-599, A-555, CIM-602, NIAB-777, MNH-786 and Bt-666) were assessed for seasonal population dynamics of dusky cotton bug (DCB) under field conditions. All transgenic varieties showed a differential DCB population over the months and no transgenic variety was free from DCB population throughout the crop duration. DCB population appeared during 3rd week of July and crossed the economic threshold level (10-15 nymph/ adults or both per plant) during August. A substantial increase in DCB population was noted during September-November with its peak population during October, 2014. Among all varieties, three varieties (CIM-599, CIM-602 & IUB-222) showed a significantly lower mean population per plant (37.76, 37.87, 43.84) and two varieties (FH-142, MNH-886) gave highest population (44.71, 46.81), respectively. Correlation matrix revealed that low temperature and high humidity were promoting the DCB population. Cluster analysis revealed interesting findings that IUB-222 with least population fall in a cluster where other two varieties (FH-142 & MNH-886) possessed highest population. Moreover, two varieties (CIM-599 & CIM-602) with least population fall in second cluster regarding DCB population. These findings would be helpful for the farmers to select the varieties that showed relatively higher resistance towards DCB population and to adopt proper management strategies keeping in view the trend of DCB population during the crop season.

7.
Saudi J Biol Sci ; 24(5): 1081-1085, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28663708

RESUMO

Hemolymph osmolarity has great effect on honey bee health, especially in arid and semi-arid zones. It regulates water and nutrients in stressed tissues. Osmotic concentration in three races (Apis mellifera ligustica, A. m. carnica and A. m. jemenitica) of Apis mellifera was tested in central Saudi Arabia during spring and summer seasons in 2015. Newly emerged bee workers were first marked and later their hemolymph was extracted after intervals of 1, 5, 10, 15, 20 and 25 days. A significant positive correlation between age and osmolarity was found in all three races during spring and summer seasons. The lowest combined osmotic concentration for all three races was found after 1 day interval, while the highest osmotic concentration was recorded after 25 days. Among all races, A. m. ligustica showed significantly high osmotic concentration after 25 days in spring and summer seasons as compared to the other two races. Only A. m. jemenitica showed similar osmotic concentration after 10 and 15 days in both spring and summer seasons compared to other two races. Mean osmotic concentration of all three races was significantly different after 20 and 25 days in spring and summer seasons. Overall mean recorded during summer was significantly higher than the mean of spring season. Combined osmotic concentration in young drones of all races was significantly lower than that of old drones during spring and summer seasons.

8.
Saudi J Biol Sci ; 24(1): 180-191, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28053589

RESUMO

The contribution of a bee plant species to honey production depends on the plant's nectar secretion quality and quantity, which is mainly governed by biotic and abiotic factors. The aim of the current study, was to investigate the nectar secretion dynamics and honey production potential of 14 major bee plant species of the target area. We examined the quantity and dynamics of nectar sugar per flower five times a day using a nectar sugar washing technique and direct measuring of nectar with calibrated capillary tubes. The average nectar sugar amount of the species varied from 0.41 mg/flower to 7.7 mg/flower (P < 0.0001). The honey sugar per flower was used to extrapolate the honey production potential per plant and per hectare of land. Accordingly the honey production potential of the species observed to vary from 14 kg/hectare in Otostegia fruticosa to 829 kg/hectare in Ziziphus spina-christi. The nectar secretion dynamics of the species generally showed an increasing trend early in the morning, peaking toward midday, followed by a decline but different species observed to have different peak nectar secretion times. Generally, the tree species secreted more nectar sugar/flower than the herbs. The nectar secretion amount of the species was positively correlated with the ambient temperature, indicating the adaptation of the species to hot climatic conditions. However, different species were observed to have a different optimum temperature for peak nectar secretion. Despite the limited rainfall and high temperature of the area, many plants were found to have good potential for honey production. The monetary value of honey per hectare of the studied honeybee plant species can be of equal or greater than the per-hectare monetary value of some cultivated crops that require numerous inputs. In addition, the information generated is believed to be useful in apiary site selection and to estimate the honey bee colony carrying capacity of an area.

9.
Saudi J Biol Sci ; 24(7): 1470-1474, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30174491

RESUMO

Nectar is used as raw material for the production of honey and as significant reward in the relationship between bees and plants during pollination. Therefore, it is important to investigate its abundance, dynamics and associated governing factors. Weather conditions are known to influence nectar production, and predicted climate changes may be responsible for future declining in total yield from beekeeping activities. We investigated nectar production as total soluble solids (TSS) of well-known species for honey production, Ziziphus nummularia in a hot-arid environment of Saudi Arabia. Data on nectar samples from bagged flowers of different stages during two blooming seasons, 2013 and 2015 were collected on weekly bases, and the data were correlated with weather conditions (temperature, relative humidity, and wind). A significant difference in TSS amount has been obtained, with 1-day old flowers displaying the higher content. TSS production was varied along the different day intervals, for both years, with a peak of production in the afternoon. In our results, nectar production was not correlated to temperature and wind, but was significantly negatively correlated with relative humidity. According to the current and future weather forecasting conditions, understanding of the relationship between weather conditions and nectar availability turned out to be important predictive information that may be interpreted into an economic projection of incomes from beekeeping activities.

10.
PLoS One ; 10(6): e0128311, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26075382

RESUMO

Propolis is a gummy material produced by honey bees to protect their hives and currently has drawn the attention of researchers due to its broad clinical use. It has been reported, based only on observations, that honey bees also collect other non-vegetation substances such as paint or asphalt/tar to make propolis. Therefore, propolis samples were collected from bee hives in Riyadh and Al-Bahah, a natural area, Saudi Arabia to determine their compositional characteristics and possible sources of the neutral organic compounds. The samples were extracted with hexane and analyzed by gas chromatography-mass spectrometry. The results showed that the major compounds were n-alkanes, n-alkenes, methyl n-alkanoates, long chain wax esters, triterpenoids and hopanes. The n-alkanes (ranging from C17 to C40) were significant with relative concentrations varying from 23.8 to 56.8% (mean = 44.9+9.4%) of the total extracts. Their odd carbon preference index (CPI) ranged from 3.6 to 7.7, with a maximum concentration at heptacosane indicating inputs from higher plant vegetation wax. The relative concentrations of the n-alkenes varied from 23.8 to 41.19% (mean = 35.6+5.1%), with CPI = 12.4-31.4, range from C25 to C35 and maximum at tritriacontane. Methyl n-alkanoates, ranged from C12 to C26 as acids, with concentrations from 3.11 to 33.2% (mean = 9.6+9.5%). Long chain wax esters and triterpenoids were minor. The main triterpenoids were α- and ß-amyrins, amyrones and amyryl acetates. The presence of hopanes in some total extracts (up to 12.5%) indicated that the bees also collected petroleum derivatives from vicinal asphalt and used that as an additional ingredient to make propolis. Therefore, caution should be taken when considering the chemical compositions of propolis as potential sources of natural products for biological and pharmacological applications. Moreover, beekeepers should be aware of the proper source of propolis in the flight range of their bee colonies.


Assuntos
Abelhas , Hidrocarbonetos/química , Própole/química , Animais , Atmosfera/química , Cromatografia Gasosa-Espectrometria de Massas , Material Particulado/química , Arábia Saudita , Solo/química
11.
Saudi J Biol Sci ; 21(3): 256-64, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24955011

RESUMO

This study was conducted in the Assir region of southwestern Saudi Arabia to compare the activities of honeybee colonies of indigenous Apis mellifera jemenitica (AMJ) and imported Apis mellifera carnica (AMC) during the late summer and autumn of 2009 and 2010. The results showed that the workers of the two races exhibited relatively similar forage timings throughout the period of study (August-November). The highest numbers of foraged workers were recorded at 6:00 am, 10:00 am and 6:00 pm, while the lowest numbers were recorded at 8:00 am, 12:00 pm and 4:00 pm. Although foraging activity was negatively affected by decreased temperature, AMJ was more resistant to cold than AMC. In the first season, the smallest amount of worker brood rearing was recorded in August, and the highest amount of rearing occurred in November in both races. In the second season, the smallest amount of brood was observed in October, and the largest amount of brood was observed in November. Brood rearing and pollen collecting was significantly (P < 0.05) higher in AMJ compared with AMC, while AMC stored significantly (P < 0.05) more honey than AMJ during the tested periods. In AMJ colonies, a positive significant correlation was observed between the area of the sealed worker brood and stored pollen, while a negative but nonsignificant correlation was observed between the area of the sealed worker brood and surplus honey. In the AMC colonies, a positive significant correlation was observed between the area of the sealed brood and the stored pollen and surplus honey.

12.
Proc Natl Acad Sci U S A ; 111(7): 2614-9, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24488971

RESUMO

Most theories used to explain the evolution of eusociality rest upon two key assumptions: mutations affecting the phenotype of sterile workers evolve by positive selection if the resulting traits benefit fertile kin, and that worker traits provide the primary mechanism allowing social insects to adapt to their environment. Despite the common view that positive selection drives phenotypic evolution of workers, we know very little about the prevalence of positive selection acting on the genomes of eusocial insects. We mapped the footprints of positive selection in Apis mellifera through analysis of 40 individual genomes, allowing us to identify thousands of genes and regulatory sequences with signatures of adaptive evolution over multiple timescales. We found Apoidea- and Apis-specific genes to be enriched for signatures of positive selection, indicating that novel genes play a disproportionately large role in adaptive evolution of eusocial insects. Worker-biased proteins have higher signatures of adaptive evolution relative to queen-biased proteins, supporting the view that worker traits are key to adaptation. We also found genes regulating worker division of labor to be enriched for signs of positive selection. Finally, genes associated with worker behavior based on analysis of brain gene expression were highly enriched for adaptive protein and cis-regulatory evolution. Our study highlights the significant contribution of worker phenotypes to adaptive evolution in social insects, and provides a wealth of knowledge on the loci that influence fitness in honey bees.


Assuntos
Adaptação Biológica/genética , Abelhas/genética , Evolução Biológica , Variação Genética , Hierarquia Social , Metagenômica , Seleção Genética , Animais , Sequência de Bases , Dados de Sequência Molecular , Análise de Sequência de DNA
13.
Zookeys ; (201): 1-14, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22768000

RESUMO

The large carpenter bees (Xylocopinae, Xylocopa Latreille) occurring in central Saudi Arabia are reviewed. Two species are recognized in the fauna, Xylocopa (Koptortosoma) aestuans (Linnaeus) and Xylocopa (Ctenoxylocopa) sulcatipes Maa. Diagnoses for and keys to the species of these prominent components of the central Saudi Arabian bee fauna are provided to aid their identification by pollination researchers active in the region. Females and males of both species are figured and biological notes provided for Xylocopa sulcatipes. Notes on the nesting biology and ecology of Xylocopa sulcatipes are appended. As in studies for this species from elsewhere, nests were found in dried stems of Calotropis procera (Aiton) (Asclepiadaceae) and Phoenix dactylifera L. (Arecaceae).

14.
Zookeys ; (134): 83-98, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22140343

RESUMO

Apis mellifera jemenitica Ruttner (= yemenitica auctorum: videEngel 1999) has been used in apiculture throughout the Arabian Peninsula since at least 2000 BC. Existing literature demonstrates that these populations are well adapted for the harsh extremes of the region. Populations of Apis mellifera jemenitica native to Saudi Arabia are far more heat tolerant than the standard races often imported from Europe. Central Saudi Arabia has the highest summer temperatures for the Arabian Peninsula, and it is in this region where only Apis mellifera jemenitica survives, while other subspecies fail to persist. The indigenous race of Saudi Arabia differs from other subspecies in the region in some morphological, biological, and behavioral characteristics. Further taxonomic investigation, as well as molecular studies, is needed in order to confirm whether the Saudi indigenous bee populations represent a race distinct from Apis mellifera jemenitica, or merely an ecotype of this subspecies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...