Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 13352, 2024 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858467

RESUMO

Liver cancer ranks as the fifth leading cause of cancer-related death globally. Direct intratumoral injections of anti-cancer therapeutics may improve therapeutic efficacy and mitigate adverse effects compared to intravenous injections. Some challenges of intratumoral injections are that the liquid drug formulation may not remain localized and have unpredictable volumetric distribution. Thus, drug delivery varies widely, highly-dependent upon technique. An X-ray imageable poloxamer 407 (POL)-based drug delivery gel was developed and characterized, enabling real-time feedback. Utilizing three needle devices, POL or a control iodinated contrast solution were injected into an ex vivo bovine liver. The 3D distribution was assessed with cone beam computed tomography (CBCT). The 3D distribution of POL gels demonstrated localized spherical morphologies regardless of the injection rate. In addition, the gel 3D conformal distribution could be intentionally altered, depending on the injection technique. When doxorubicin (DOX) was loaded into the POL and injected, DOX distribution on optical imaging matched iodine distribution on CBCT suggesting spatial alignment of DOX and iodine localization in tissue. The controllability and localized deposition of this formulation may ultimately reduce the dependence on operator technique, reduce systemic side effects, and facilitate reproducibility across treatments, through more predictable standardized delivery.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Doxorrubicina , Sistemas de Liberação de Medicamentos , Hidrogéis , Agulhas , Poloxâmero , Hidrogéis/química , Animais , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Poloxâmero/química , Bovinos , Tomografia Computadorizada de Feixe Cônico/métodos , Fígado/diagnóstico por imagem , Fígado/metabolismo
2.
Res Sq ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38496436

RESUMO

Liver cancer ranks as the fifth leading cause of cancer-related death globally. Direct intratumoral injections of anti-cancer therapeutics may improve therapeutic efficacy and mitigate adverse effects compared to intravenous injections. Some challenges of intratumoral injections are that the liquid drug formulation may not remain localized and have unpredictable volumetric distribution. Thus, drug delivery varies widely, highly-dependent upon technique. An x-ray imageable poloxamer 407 (POL)-based drug delivery gel was developed and characterized, enabling real-time feedback. Utilizing three needle devices, POL or a control iodinated contrast solution were injected into an ex vivo bovine liver. The 3D distribution was assessed with cone beam computed tomography (CBCT). The 3D distribution of POL gels demonstrated localized spherical morphologies regardless of the injection rate. In addition, the gel 3D conformal distribution could be intentionally altered, depending on the injection technique. When doxorubicin (DOX) was loaded into the POL and injected, DOX distribution on optical imaging matched iodine distribution on CBCT suggesting spatial alignment of DOX and iodine localization in tissue. The controllability and localized deposition of this formulation may ultimately reduce the dependence on operator technique, reduce systemic side effects, and facilitate reproducibility across treatments, through more predictable standardized delivery.

3.
J Hepatocell Carcinoma ; 10: 1973-1990, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954494

RESUMO

Objectives: Local and systemic immune responses evoked by locoregional therapies such as cryoablation are incompletely understood. The aim of this study was to characterize cryoablation-related immune response and the capacity of immune drugs to augment immunity upon cryoablation for the treatment of hepatocellular carcinoma (HCC) using a woodchuck hepatocellular carcinoma model. Materials and Methods: Twelve woodchucks chronically infected with woodchuck hepatitis virus and with hepatocellular carcinoma underwent imaging with contrast-enhanced CT. Partial cryoablation of tumors in three woodchucks was performed. Fourteen days after cryoablation, liver tissues were harvested and stained with H&E and TUNEL, and immune infiltrates were quantified. Peripheral blood mononuclear cells (PBMC) were collected from ablated and nonablated woodchucks, labeled with carboxyfluorescein succinimidyl ester (CFSE) and cultured with immune-modulating drugs, including a small PD-L1 antagonist molecule (BMS-202) and three TLR7/8 agonists (DSR 6434, GS-9620, gardiquimod). After incubation, cell replication and immune cell populations were analyzed by flow cytometry. Results: Local immune response in tumors was characterized by an increased number of CD3+ T lymphocytes and natural killer cells in the cryolesion margin compared to other tumor regions. T regulatory cells were found in higher numbers in distant tumors within the liver compared to untreated or control tumors. Cryoablation also augmented the systemic immune response as demonstrated by higher numbers of PBMC responses upon immune drug stimulation in the cryoablation group. Conclusions: Partial cryoablation augmented immune effects in both treated and remote untreated tumor microenvironments, as well as systemically, in woodchucks with HCC. Characterization of these mechanisms may enhance development of novel drug-device combinations for treatment of HCC.

5.
Sci Rep ; 12(1): 21886, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36535979

RESUMO

Hepatocellular carcinoma (HCC) is an aggressive liver cancer with limited effective treatment options. In this study, we selected TLR agonists imiquimod (IMQ), gardiquimod (GARD), GS-9620 and DSR 6434, and a small molecule checkpoint inhibitor, BMS-202, for characterization of drug loading and release from radiopaque embolic beads (DC Bead LUMI) for potential use in image-guided transarterial embolization (TACE) of HCC. The maximum drug loading capacity and amount of drug released over time were determined by high performance liquid chromatography and compared with the commonly used anthracycline, doxorubicin hydrochloride (Dox). Maximum drug loading was 204.54 ± 3.87, 65.28 ± 3.09, 65.95 ± 6.96, 65.97 ± 1.54, and 148.05 ± 2.24 mg of drug per milliliter of DC Bead LUMI for Dox, GARD, DSR 6434, IMQ, and BMS-202, respectively. Fast loading and subsequent rapid release in saline were observed for IMQ, GARD, and DSR 6434. These drugs could also be partially removed from the beads by repeated washing with de-ionized water suggesting weak interaction with the beads. Aggregation of IMQ was observed in water and saline. GS-9620 partially decomposed in the solubilizing solution, so loading and release were not characterized. Compared to TLR agonists, slower loading and release were observed for Dox and BMS-202. Potential factors influencing drug loading into and release from DC Bead LUMI including steric hinderance, hydrophobicity, drug pKa, and the electrostatic nature of the beads are discussed. The maximum loading capacity of BMS-202 and Dox in DC Bead LUMI exceeded the maximum theoretical loading capacity of the beads expected from ionic interaction alone suggesting additional drug-bead or drug-drug interactions may play a role. Slightly more release was observed for BMS-202 at early time points followed by a slower release compared to Dox. Further study of these drug-bead combinations is warranted in search of new tools for locoregional delivery of immune-modulating agents for treatment of HCC via drug-eluting bead chemoembolization.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/terapia , Quimioembolização Terapêutica/métodos , Doxorrubicina/química , Antibióticos Antineoplásicos/química , Microesferas
6.
Sci Rep ; 12(1): 18229, 2022 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-36309550

RESUMO

The immune response to radiofrequency ablation (RFA) and cryoablation (CRA) was characterized and compared in a colon cancer mouse model. All studies were conducted under a research protocol approved by the National Institutes of Health, Clinical Center, Animal Care and Use Committee. BALB/cJ mice were inoculated with CT26 cells, and randomized to RFA, CRA, or sham treatment. Mice were sacrificed 3 days post-treatment, and tumor, spleen, and serum were harvested. Cell death was determined by Caspase-3 immunohistochemical and TUNEL stains. Immune response was analyzed using flow cytometry, serum cytokine assay and immunohistochemistry. Cell death, necrosis, and apoptosis induced by ablation were comparable in RFA and CRA. Decreased frequency of systemic T-regulatory cells was found in the CRA group. Both RFA and CRA reduced frequencies of several myeloid-derived suppressor cell (MDSC) subpopulations. RFA induced pro-inflammatory cytokine secretion including TNF-α and IL-12 as well as anti-inflammatory cytokines IL-5, and IL-10. CRA augmented secretion of a wider array of cytokines compared to RFA with both pro- and anti-inflammatory properties including IL-1ß, IL-5, IL-6, IL-10, and KC GRO. In the tumor microenvironment, RFA reduced the number of T-regulatory cells, a finding not observed with CRA. Reduction of immune suppression via decreases in T-regulatory cells and MDSC was found to be induced by RFA or CRA. CRA augmented a wider range of cytokines than RFA, which were mainly pro-inflammatory, but also anti-inflammatory. In the tumor microenvironment, RFA demonstrated more pronounced anti-tumoral immunity. Further delineation of specific immunomodulation induced by ablation could inform drug-device development and may play a role in future hypothesis-driven immunomodulatory paradigms that combine immunotherapy drugs with tumor destruction for the treatment of metastatic colon cancer.


Assuntos
Ablação por Cateter , Neoplasias do Colo , Criocirurgia , Ablação por Radiofrequência , Animais , Camundongos , Ablação por Cateter/métodos , Neoplasias do Colo/cirurgia , Citocinas , Modelos Animais de Doenças , Imunidade , Interleucina-10 , Interleucina-5 , Microambiente Tumoral , Distribuição Aleatória
7.
Int J Pharm ; 616: 121466, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35065205

RESUMO

Cancer immunotherapy has yet to reach its full potential due in part to limited response rates and side effects inherent to systemic delivery of immune-modulating drugs. Local administration of immunotherapy using drug-eluting embolic (DEE) microspheres as drug delivery vehicles for direct infusion into tumor-feeding arteries might increase and prolong tumor drug concentrations and reduce systemic drug exposure, potentially improving the risk-to-benefit ratio of these agents. The purpose of this study was to evaluate the ability of four immune modulators affecting two different immune pathways to potentiate replication of immune cells from a woodchuck model of hepatocellular carcinoma. DSR 6434, a Toll-like receptor agonist, and BMS-202, a PD-L1 checkpoint inhibitor, induced immune cell replication and were successfully loaded into radiopaque DEE microspheres in high concentrations. Release of DSR 6434 from the DEE microspheres was rapid (t99% = 0.4 h) upon submersion in a physiologic saline solution while BMS-202 demonstrated a more sustained release profile (t99% = 17.9 h). These findings demonstrate the feasibility of controlled delivery of immune-modulating drugs via a local DEE microsphere delivery paradigm.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Carcinoma Hepatocelular/patologia , Quimioembolização Terapêutica/efeitos adversos , Doxorrubicina , Humanos , Neoplasias Hepáticas/patologia , Microesferas , Preparações Farmacêuticas
8.
Expert Opin Drug Deliv ; 18(3): 383-398, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33480306

RESUMO

INTRODUCTION: Drug-eluting embolic (DEE) microspheres, or drug-eluting beads (DEB), delivered by transarterial chemoembolization (TACE) serve as a therapeutic embolic to stop blood flow to tumors and a drug delivery vehicle. New combinations of drugs and DEE microspheres may exploit the potential synergy between mechanisms of drug activity and local tissue responses generated by TACE to enhance the efficacy of this mainstay therapy. AREAS COVERED: This review provides an overview of key drug delivery concepts related to DEE microspheres with a focus on recent technological developments and promising emerging clinical applications as well as speculation into the future. EXPERT OPINION: TACE has been performed for nearly four decades by injecting chemotherapy drugs into the arterial supply of tumors while simultaneously cutting off their blood supply, trying to starve and kill cancer cells, with varying degrees of success. The practice has evolved over the decades but has yet to fulfill the promise of truly personalized therapies envisioned through rational selection of drugs and real-time multi-parametric image guidance to target tumor clonality or heterogeneity. Recent technologic and pharmacologic developments have opened the door for potentially groundbreaking advances in how TACE with DEE microspheres is performed with the goal of achieving advancements that benefit patients.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Preparações Farmacêuticas , Carcinoma Hepatocelular/terapia , Doxorrubicina , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Microesferas , Estudos Retrospectivos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...