Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytopathology ; 111(1): 116-127, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33112215

RESUMO

Many current tree improvement programs are incorporating assisted gene flow strategies to match reforestation efforts with future climates. This is the case for the lodgepole pine (Pinus contorta var. latifolia), the most extensively planted tree in western Canada. Knowledge of the structure and origin of pathogen populations associated with this tree would help improve the breeding effort. Recent outbreaks of the Dothistroma needle blight (DNB) pathogen Dothistroma septosporum on lodgepole pine in British Columbia and its discovery in Alberta plantations raised questions about the diversity and population structure of this pathogen in western Canada. Using genotyping-by-sequencing on 119 D. septosporum isolates from 16 natural pine populations and plantations from this area, we identified four genetic lineages, all distinct from the other DNB lineages from outside of North America. Modeling of the population history indicated that these lineages diverged between 31.4 and 7.2 thousand years ago, coinciding with the last glacial maximum and the postglacial recolonization of lodgepole pine in western North America. The lineage found in the Kispiox Valley from British Columbia, where an unprecedented DNB epidemic occurred in the 1990s, was close to demographic equilibrium and displayed a high level of haplotypic diversity. Two lineages found in Alberta and Prince George (British Columbia) showed departure from random mating and contemporary gene flow, likely resulting from pine breeding activities and material exchanges in these areas. The increased movement of planting material could have some major consequences by facilitating secondary contact between genetically isolated DNB lineages, possibly resulting in new epidemics.


Assuntos
Pinus , Doenças das Plantas , Ascomicetos , Colúmbia Britânica , Humanos , América do Norte , Melhoramento Vegetal
3.
PLoS Genet ; 8(11): e1003088, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23209441

RESUMO

We sequenced and compared the genomes of the Dothideomycete fungal plant pathogens Cladosporium fulvum (Cfu) (syn. Passalora fulva) and Dothistroma septosporum (Dse) that are closely related phylogenetically, but have different lifestyles and hosts. Although both fungi grow extracellularly in close contact with host mesophyll cells, Cfu is a biotroph infecting tomato, while Dse is a hemibiotroph infecting pine. The genomes of these fungi have a similar set of genes (70% of gene content in both genomes are homologs), but differ significantly in size (Cfu >61.1-Mb; Dse 31.2-Mb), which is mainly due to the difference in repeat content (47.2% in Cfu versus 3.2% in Dse). Recent adaptation to different lifestyles and hosts is suggested by diverged sets of genes. Cfu contains an α-tomatinase gene that we predict might be required for detoxification of tomatine, while this gene is absent in Dse. Many genes encoding secreted proteins are unique to each species and the repeat-rich areas in Cfu are enriched for these species-specific genes. In contrast, conserved genes suggest common host ancestry. Homologs of Cfu effector genes, including Ecp2 and Avr4, are present in Dse and induce a Cf-Ecp2- and Cf-4-mediated hypersensitive response, respectively. Strikingly, genes involved in production of the toxin dothistromin, a likely virulence factor for Dse, are conserved in Cfu, but their expression differs markedly with essentially no expression by Cfu in planta. Likewise, Cfu has a carbohydrate-degrading enzyme catalog that is more similar to that of necrotrophs or hemibiotrophs and a larger pectinolytic gene arsenal than Dse, but many of these genes are not expressed in planta or are pseudogenized. Overall, comparison of their genomes suggests that these closely related plant pathogens had a common ancestral host but since adapted to different hosts and lifestyles by a combination of differentiated gene content, pseudogenization, and gene regulation.


Assuntos
Adaptação Fisiológica/genética , Cladosporium/genética , Genoma , Interações Hospedeiro-Patógeno , Sequência de Bases , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Solanum lycopersicum/genética , Solanum lycopersicum/parasitologia , Filogenia , Pinus/genética , Pinus/parasitologia , Doenças das Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...