Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Catal ; 13(20): 13607-13617, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37881792

RESUMO

A cobalt photocatalyst for direct trifluoromethylation of (hetero)arene C(sp2)-H bonds is described and shown to operate via visible light activation of a Co-CF3 intermediate, which functions as a combined chromophore and organometallic reaction center. Chemical oxidations of previously reported (OCO)Co complexes containing a redox-active [OCO] pincer ligand afford a Co-CF3 complex two oxidation states above Co(II). Computational and spectroscopic studies are consistent with formulation of the product as [(OCO•)CoIII(CF3)(THF)(OTf)] (II) containing an open-shell [OCO•]1- radical ligand bound to a S = 0 Co(III) center. II is thermodynamically stable, but exposure to blue (440 nm) light induces Co-CF3 bond homolysis and release of •CF3, which is trapped by radical acceptors including TEMPO•, (hetero)arenes, or the radical [OCO•] ligand in II. The latter comprises a competitive degradation pathway, which is overcome under catalytic conditions by using excess substrate. Accordingly, generation of II from the reaction of [(OCO)CoIIL] (III) (L = THF, MeCN) with Umemoto's dibenzothiophenium trifluoromethylating reagent (1) followed by photolytic Co-CF3 bond activation completes a photoredox catalytic cycle for C-H (hetero)arene trifluoromethylation utilizing visible light. Electronic structure and photophysical studies, including time-dependent density functional theory (TDDFT) calculations, suggest that Co-CF3 bond homolysis at II occurs via an ligand-to-metal charge-transfer (LMCT) (OCO0)CoII(CF3) state, revealing ligand redox activity as a critical design feature and establishing design principles for the use of base metal chromophores for selectivity in photoredox bond activations occurring via free radical intermediates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...