Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Adv Mater ; 33(48): e2105174, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34561908

RESUMO

Fast fashion, as a continuously growing part of the textile industry, is widely criticized for its excessive resource use and high generation of textiles. To reduce its environmental impacts, numerous efforts are focused on finding sustainable and eco-friendly approaches to textile recycling. However, waste textiles and fibers are still mainly disposed of in landfills or by incineration after their service life and thereby pollute the natural environment, as there is still no effective strategy to separate natural fibers from chemical fibers. Herein, a green chemistry strategy is developed for the separation and regeneration of waste textiles at the molecular level. Cellulose/wool keratin composite fibers and multicomponent fibers are regenerated from waste textiles via a green chemical process. The strategy attempts to reduce the large amount of waste textiles generated by the fast-developing fashion industry and provide a new source of fibers, which can also address the fossil fuel reserve shortages caused by chemical fiber industries and global food shortages caused by natural fiber production.

3.
J Nanopart Res ; 20(8): 213, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30147435

RESUMO

The solvent varying technique (SVT) provides a simple method for the production of uniform batches of silica nanoparticles (SNPs) of a target average diameter. SNPs synthesized using the SVT have been observed to agglomerate over increasing storage times leading to an increase in average particle diameter. Since the particle diameters of the SNPs produced using the SVT may vary over increasing storage durations, the previous model, suggested by Gao et al., which is based on the diameter of the original SNPs, is unreliable when predicting a target particle diameter using the initial volume of ethanol. A centrifuge and replacement of solvent method has been applied in this investigation to the SNP solutions created using the SV technique. This reduces the amount of unused reactants in the centrifuged colloidal suspensions, which further improves the quality of the SNPs and hence any subsequent photonic crystals. Post centrifuge and replace, the morphology of the centrifuged particles is more uniform than that of the original particles, which has been evaluated using SEM micrographs. The face-centered cubic (FCC) structures observed on the surface of the photonic crystal films have also been imaged using a SEM. A linear equation for the prediction of the SNP diameters for a given initial amount of ethanol is proposed based on the centrifuged SNP diameters. The particle diameter measurements for the new equation were recorded using a DLS instrument. The dispersion of the SNPs was also recorded using DLS. The morphology of the surface of the particles has been confirmed using TEM micrographs. Graphical abstractᅟ.

4.
J Nanopart Res ; 19(9): 303, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28932168

RESUMO

The work presented investigates how to produce structural colours on textile materials by applying a surface coating of silica nanoparticles (SNPs). Uniform SNPs with particle diameters in a controlled micron size range (207-350 nm) were synthesized using a Stöber-based solvent varying (SV) method which has been reported previously. Photonic crystals (PCs) were formed on the surface of a piece of textile fabric through a process of natural sedimentation self-assembly of the colloidal suspension containing uniform SNPs. Due to the uniformity and a particular diameter range of the prepared SNPs, structural colours were observed from the fabric surface due to the Bragg diffraction of white light with the ordered structure of the silica PCs. By varying the mean particle diameter, a wide range of spectral colours from red to blue were obtained. The comparison of structural colours on fabrics and on glasses suggests that a smooth substrate is critical when producing materials with high colour intensity and spatial uniformity. This work suggested a promising approach to colour textile materials without the need for traditional dyes and/or pigments. Graphical abstract.

5.
J Nanopart Res ; 18(12): 387, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28042282

RESUMO

In this work, the Stöber process was applied to produce uniform silica nanoparticles (SNPs) in the meso-scale size range. The novel aspect of this work was to control the produced silica particle size by only varying the volume of the solvent ethanol used, whilst fixing the other reaction conditions. Using this one-step Stöber-based solvent varying (SV) method, seven batches of SNPs with target diameters ranging from 70 to 400 nm were repeatedly reproduced, and the size distribution in terms of the polydispersity index (PDI) was well maintained (within 0.1). An exponential equation was used to fit the relationship between the particle diameter and ethanol volume. This equation allows the prediction of the amount of ethanol required in order to produce particles of any target diameter within this size range. In addition, it was found that the reaction was completed in approximately 2 h for all batches regardless of the volume of ethanol. Structurally coloured artificial opal photonic crystals (PCs) were fabricated from the prepared SNPs by self-assembly under gravity sedimentation. Figureᅟ .

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...