Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
4.
Nat Neurosci ; 22(7): 1089-1098, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31235908

RESUMO

Pericytes are positioned between brain capillary endothelial cells, astrocytes and neurons. They degenerate in multiple neurological disorders. However, their role in the pathogenesis of these disorders remains debatable. Here we generate an inducible pericyte-specific Cre line and cross pericyte-specific Cre mice with iDTR mice carrying Cre-dependent human diphtheria toxin receptor. After pericyte ablation with diphtheria toxin, mice showed acute blood-brain barrier breakdown, severe loss of blood flow, and a rapid neuron loss that was associated with loss of pericyte-derived pleiotrophin (PTN), a neurotrophic growth factor. Intracerebroventricular PTN infusions prevented neuron loss in pericyte-ablated mice despite persistent circulatory changes. Silencing of pericyte-derived Ptn rendered neurons vulnerable to ischemic and excitotoxic injury. Our data demonstrate a rapid neurodegeneration cascade that links pericyte loss to acute circulatory collapse and loss of PTN neurotrophic support. These findings may have implications for the pathogenesis and treatment of neurological disorders that are associated with pericyte loss and/or neurovascular dysfunction.


Assuntos
Proteínas de Transporte/fisiologia , Citocinas/fisiologia , Degeneração Neural/fisiopatologia , Proteínas do Tecido Nervoso/fisiologia , Neurônios/patologia , Pericitos/fisiologia , Choque/fisiopatologia , Animais , Isquemia Encefálica/fisiopatologia , Capilares/fisiopatologia , Proteínas de Transporte/uso terapêutico , Células Cultivadas , Circulação Cerebrovascular/fisiologia , Citocinas/deficiência , Citocinas/uso terapêutico , Células Endoteliais/citologia , Feminino , Genes Reporter , Infusões Intraventriculares , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Degeneração Neural/tratamento farmacológico , Neuroglia/metabolismo , Neurônios/metabolismo , Neurotoxinas/toxicidade , Regiões Promotoras Genéticas , Proteínas Recombinantes de Fusão/metabolismo , Choque/metabolismo , Choque/patologia
5.
Mol Neurodegener ; 13(1): 57, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30340601

RESUMO

BACKGROUND: Clearance at the blood-brain barrier (BBB) plays an important role in removal of Alzheimer's amyloid-ß (Aß) toxin from brain both in humans and animal models. Apolipoprotein E (apoE), the major genetic risk factor for AD, disrupts Aß clearance at the BBB. The cellular and molecular mechanisms, however, still remain unclear, particularly whether the BBB-associated brain capillary pericytes can contribute to removal of aggregated Aß from brain capillaries, and whether removal of Aß aggregates by pericytes requires apoE, and if so, is Aß clearance on pericytes apoE isoform-specific. METHODS: We performed immunostaining for Aß and pericyte biomarkers on brain capillaries (< 6 µm in diameter) on tissue sections derived from AD patients and age-matched controls, and APPSwe/0 mice and littermate controls. Human Cy3-Aß42 uptake by pericytes was studied on freshly isolated brain slices from control mice, pericyte LRP1-deficient mice (Lrplox/lox;Cspg4-Cre) and littermate controls. Clearance of aggregated Aß42 by mouse pericytes was studied on multi-spot glass slides under different experimental conditions including pharmacologic and/or genetic inhibition of the low density lipoprotein receptor related protein 1 (LRP1), an apoE receptor, and/or silencing mouse endogenous Apoe in the presence and absence of human astrocyte-derived lipidated apoE3 or apoE4. Student's t-test and one-way ANOVA followed by Bonferroni's post-hoc test were used for statistical analysis. RESULTS: First, we found that 35% and 60% of brain capillary pericytes accumulate Aß in AD patients and 8.5-month-old APPSw/0 mice, respectively, compared to negligible uptake in controls. Cy3-Aß42 species were abundantly taken up by pericytes on cultured mouse brain slices via LRP1, as shown by both pharmacologic and genetic inhibition of LRP1 in pericytes. Mouse pericytes vigorously cleared aggregated Cy3-Aß42 from multi-spot glass slides via LRP1, which was inhibited by pharmacologic and/or genetic knockdown of mouse endogenous apoE. Human astrocyte-derived lipidated apoE3, but not apoE4, normalized Aß42 clearance by mouse pericytes with silenced mouse apoE. CONCLUSIONS: Our data suggest that BBB-associated pericytes clear Aß aggregates via an LRP1/apoE isoform-specific mechanism. These data support the role of LRP1/apoE interactions on pericytes as a potential therapeutic target for controlling Aß clearance in AD.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Apolipoproteínas E/metabolismo , Barreira Hematoencefálica/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Fragmentos de Peptídeos/metabolismo , Receptores de LDL/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Transporte Biológico/fisiologia , Encéfalo/metabolismo , Humanos , Camundongos Transgênicos , Pericitos/metabolismo
6.
Nat Neurosci ; 18(7): 978-87, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26005850

RESUMO

PICALM is a highly validated genetic risk factor for Alzheimer's disease (AD). We found that reduced expression of PICALM in AD and murine brain endothelium correlated with amyloid-ß (Aß) pathology and cognitive impairment. Moreover, Picalm deficiency diminished Aß clearance across the murine blood-brain barrier (BBB) and accelerated Aß pathology in a manner that was reversible by endothelial PICALM re-expression. Using human brain endothelial monolayers, we found that PICALM regulated PICALM/clathrin-dependent internalization of Aß bound to the low density lipoprotein receptor related protein-1, a key Aß clearance receptor, and guided Aß trafficking to Rab5 and Rab11, leading to Aß endothelial transcytosis and clearance. PICALM levels and Aß clearance were reduced in AD-derived endothelial monolayers, which was reversible by adenoviral-mediated PICALM transfer. Inducible pluripotent stem cell-derived human endothelial cells carrying the rs3851179 protective allele exhibited higher PICALM levels and enhanced Aß clearance. Thus, PICALM regulates Aß BBB transcytosis and clearance, which has implications for Aß brain homeostasis and clearance therapy.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Barreira Hematoencefálica/metabolismo , Córtex Cerebral/metabolismo , Proteínas Monoméricas de Montagem de Clatrina/metabolismo , Animais , Capilares/metabolismo , Endotélio Vascular/metabolismo , Homeostase , Humanos , Taxa de Depuração Metabólica , Camundongos , Camundongos Knockout , Proteínas Monoméricas de Montagem de Clatrina/deficiência , Células-Tronco Pluripotentes , Transcitose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...