Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; : 1-13, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38555858

RESUMO

Sickle cell disease (SCD) poses a significant health challenge and therapeutic approaches often target fetal hemoglobin (HbF) to ameliorate symptoms. Hydroxyurea, a current therapeutic option for SCD, has shown efficacy in increasing HbF levels. However, concerns about myelosuppression and thrombocytopenia necessitate the exploration of alternative compounds. Heme-regulated inhibitor (HRI) presents a promising target for pharmacological intervention in SCD due to its association with HbF modulation. This study screened compounds for their potential inhibitory functions against HRI. Small-molecule compounds from 17 folkloric plants were subjected to in silico screening against HRI. Molecular docking was performed, and free binding energy calculations were determined using molecular mechanics with generalized born and surface area (MMGBSA). Lead compounds were subjected to molecular dynamics simulation at 100 ns. Computational quantum mechanical modeling of the lead compounds was subsequently performed. We further examined the pharmacodynamics, pharmacokinetic and physiological properties of the identified compounds. Five potential HRI inhibitors, including kaempferol-3-(2G-glucosyrutinoside), epigallocatechin gallate, tiliroside, myricetin-3-O-glucoside and cannabiscitrin, with respective docking scores of -16.0, -12.17, -11.37, -11.56 and 11.07 kcal/mol, were identified. The MMGBSA analysis of the complexes yielded free-binding energies of -69.76, -71.17, -60.44, -53.55 and -55 kcal/mol, respectively. The identified leads were stable within HRI binding pocket for the duration of the 100 ns simulation. The study identified five phytoligands with potential inhibitory effects on HRI. This finding holds promise for advancing SCD treatment strategies. However, additional preclinical analyses are warranted to validate the chemotherapeutic properties of the lead compounds.Communicated by Ramaswamy H. Sarma.

2.
Res Sq ; 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38168168

RESUMO

Background: Sickle cell disease (SCD) poses a significant health challenge and therapeutic approaches often target fetal hemoglobin (HbF) to ameliorate symptoms. Hydroxyurea, a current therapeutic option for SCD, has shown efficacy in increasing HbF levels. However, concerns about myelosuppression and thrombocytopenia necessitate the exploration of alternative compounds. Heme-regulated inhibitor (HRI) presents a promising target for pharmacological intervention in SCD due to its association with HbF modulation. This study systematically screened compounds for their potential inhibitory functions against HRI. Methods: Small-molecule compounds from 17 plants commonly utilized in traditional SCD management were subjected to in silico screening against HRI. Molecular docking was performed, and free binding energy calculations were determined using molecular mechanics with generalized born and surface area (MMGBSA). The lead compounds were subjected to molecular dynamics simulation at 100 ns. Computational quantum mechanical modelling of the lead compounds was subsequently performed. We further examined the pharmacodynamics, pharmacokinetic and physiological properties of the identified compounds. Results: Five potential HRI inhibitors, including kaempferol-3-(2G-glucosyrutinoside), epigallocatechin gallate, tiliroside, myricetin-3-O-glucoside, and cannabiscitrin, with respective docking scores of -16.0, -12.17, -11.37, -11.56 and 11.07 kcal/mol, were identified. The MMGBSA analysis of the complexes yielded free-binding energies of -69.76, -71.17, -60.44, 53.55, and - 55 kcal/mol, respectively. The identified leads were stable within HRI binding pocket for the duration of 100 ns simulation. Conclusions: The study successfully identified five phytoligands with potential inhibitory effects on HRI, opening avenues for their use as modulators of HbF in SCD patients. This finding holds promise for advancing treatment strategies in SCD. However, additional preclinical analyses are warranted to validate the chemotherapeutic properties of the lead compounds.

3.
PLoS One ; 17(8): e0268269, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36026508

RESUMO

Antimalarial drug resistance has thrown a spanner in the works of malaria elimination. New drugs are required for ancillary support of existing malaria control efforts. Plasmodium falciparum requires host glucose for survival and proliferation. On this basis, P. falciparum hexose transporter 1 (PfHT1) protein involved in hexose permeation is considered a potential drug target. In this study, we tested the antimalarial activity of some compounds against PfHT1 using computational techniques. We performed high throughput virtual screening of 21,352 small-molecule compounds against PfHT1. The stability of the lead compound complexes was evaluated via molecular dynamics (MD) simulation for 100 nanoseconds. We also investigated the pharmacodynamic, pharmacokinetic and physiological characteristics of the compounds in accordance with Lipinksi rules for drug-likeness to bind and inhibit PfHT1. Molecular docking and free binding energy analyses were carried out using Molecular Mechanics with Generalized Born and Surface Area (MMGBSA) solvation to determine the selectivity of the hit compounds for PfHT1 over the human glucose transporter (hGLUT1) orthologue. Five important PfHT1 inhibitors were identified: Hyperoside (CID5281643); avicularin (CID5490064); sylibin (CID5213); harpagoside (CID5481542) and quercetagetin (CID5281680). The compounds formed intermolecular interaction with the binding pocket of the PfHT1 target via conserved amino acid residues (Val314, Gly183, Thr49, Asn52, Gly183, Ser315, Ser317, and Asn48). The MMGBSA analysis of the complexes yielded high free binding energies. Four (CID5281643, CID5490064, CID5213, and CID5481542) of the identified compounds were found to be stable within the PfHT1 binding pocket throughout the 100 nanoseconds simulation run time. The four compounds demonstrated higher affinity for PfHT1 than the human major glucose transporter (hGLUT1). This investigation demonstrates the inhibition potential of sylibin, hyperoside, harpagoside, and avicularin against PfHT1 receptor. Robust preclinical investigations are required to validate the chemotherapeutic properties of the identified compounds.


Assuntos
Antimaláricos , Malária Falciparum , Proteínas de Transporte de Monossacarídeos , Plasmodium falciparum , Proteínas de Protozoários , Antimaláricos/farmacologia , Proteínas Facilitadoras de Transporte de Glucose , Humanos , Malária Falciparum/tratamento farmacológico , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteínas de Transporte de Monossacarídeos/antagonistas & inibidores , Plasmodium falciparum/efeitos dos fármacos , Ligação Proteica , Proteínas de Protozoários/antagonistas & inibidores
4.
Malar J ; 20(1): 451, 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34856982

RESUMO

BACKGROUND: The devastating public health impact of malaria has prompted the need for effective interventions. Malaria control gained traction after the introduction of artemisinin-based combination therapy (ACT). However, the emergence of artemisinin (ART) partial resistance in Southeast Asia and emerging reports of delayed parasite sensitivity to ACT in African parasites signal a gradual trend towards treatment failure. Monitoring the prevalence of mutations associated with artemisinin resistance in African populations is necessary to stop resistance in its tracks. Mutations in Plasmodium falciparum genes pfk13, pfcoronin and pfatpase6 have been linked with ART partial resistance. METHODS: Findings from published research articles on the prevalence of pfk13, pfcoronin and pfatpase6 polymorphisms in Africa were collated. PubMed, Embase and Google Scholar were searched for relevant articles reporting polymorphisms in these genes across Africa from 2014 to August 2021, for pfk13 and pfcoronin. For pfatpase6, relevant articles between 2003 and August 2021 were retrieved. RESULTS: Eighty-seven studies passed the inclusion criteria for this analysis and reported 742 single nucleotide polymorphisms in 37,864 P. falciparum isolates from 29 African countries. Five validated-pfk13 partial resistance markers were identified in Africa: R561H in Rwanda and Tanzania, M476I in Tanzania, F446I in Mali, C580Y in Ghana, and P553L in an Angolan isolate. In Tanzania, three (L263E, E431K, S769N) of the four mutations (L263E, E431K, A623E, S769N) in pfatpase6 gene associated with high in vitro IC50 were reported. pfcoronin polymorphisms were reported in Senegal, Gabon, Ghana, Kenya, and Congo, with P76S being the most prevalent mutation. CONCLUSIONS: This meta-analysis provides an overview of the prevalence and widespread distribution of pfk13, pfcoronin and pfatpase6 mutations in Africa. Understanding the phenotypic consequences of these mutations can provide information on the efficacy status of artemisinin-based treatment of malaria across the continent.


Assuntos
Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Resistência a Medicamentos/efeitos dos fármacos , Plasmodium falciparum , Proteínas de Protozoários/genética , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia , Plasmodium falciparum/genética , Proteínas de Protozoários/metabolismo
5.
Heliyon ; 6(10): e05221, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33102847

RESUMO

This study was done to investigate the effects of common food additives such as sodium benzoate (SB) and ascorbic acid (AA) on haematological parameters of male Wistar rats. Forty-eight (48) male albino rats with an average weight of 105 g were grouped into twelve (n = 4) of Basal Control and other 11 groups orally administered 1 mg of SB, 10 mg of SB, 10 mg of AA, 0.2 mg of AA + 0.5 mg of SB, 0.2 mg of AA + 1 mg of SB, 0.2 mg of AA + 10 mg of SB, 0.2 mg of SB + 0.1 mg of AA, 0.2 mg of SB + 0.5 mg of AA, carbonated soft drinks (CSD)+ 0.1 mg of AA, CSD + 1 mg of AA and CSD + 10 mg of AA, respectively for 21 non-consecutive days. At the end of the experiment, blood samples were collected in EDTA anticoagulant tubes, haematological parameters were evaluated, and data were analyzed. There was a dose-dependent increase (p < 0.05) in White Blood Cell counts of SB treated rats compared with the control group. The lymphocyte exhibited significant reduction (p < 0.05) in the groups treated with 1mg SB and 10mg SB/kg bodyweight of 67 ± 2.96 and 58 ± 4.18%, respectively. The mean corpuscular haemoglobin showed no significant difference at 95% confidence interval. However, mean corpuscular haemoglobin concentration, haematocrit and platelet were affected by an increase in the concentrations of SB. High SB concentrations increased the destruction of erythrocytes, which directly increased the catabolism of haemoglobin. However, AA administration mitigated the adverse effects of SB on the haematological parameters of the animal.

6.
Bioinformation ; 16(9): 672-678, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34621112

RESUMO

Malaria remains a global public health burden with significant mortality and morbidity. Despite the several approved drugs available for its management, the parasite has developed resistance to virtually all known antimalarial drugs. The development of a new drug that can combat resistant to Artemisinin based Combination Therapies (ACTs) for malaria is imperative. Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH), a flavin-dependent mitochondrial enzyme is vital in the parasite's pyrimidine biosynthesis is a well-known drug target. Therefore, it is of interest to document the MOLECULAR DOCKING analysis (using Maestro, Schrodinger) data of DIHYDROOROTATE DEHYDROGENASE PfDHODH from P. falciparum towards the design of effective inhibitors. The molecular docking features of 10 compounds with reference to chloroquine with PfDHODH are documented in this report for further consideration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...