Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 38(18): 5829-35, 1999 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-10231534

RESUMO

Human class I beta 3 beta 3 is one of the alcohol dehydrogenase dimers that catalyzes the reversible oxidation of ethanol. The beta 3 subunit has a Cys substitution for Arg-369 (beta 369C) in the coenzyme-binding site of the beta1 subunit. Kinetic studies have demonstrated that this natural mutation in the coenzyme-binding site decreases affinity for NAD+ and NADH. Structural studies suggest that the enzyme isomerizes from an open to closed form with coenzyme binding. However, the extent to which this isomerization limits catalysis is not known. In this study, stopped-flow kinetics were used from pH 6 to 9 with recombinant beta 369C to evaluate rate-limiting steps in coenzyme association and catalysis. Association rates of NADH approached an apparent zero-order rate with increasing NADH concentrations at pH 7.5 (42 +/- 1 s-1). This observation is consistent with an NADH-induced isomerization of the enzyme from an open to closed conformation. The pH dependence of apparent zero-order rate constants fit best a model in which a single ionization limits diminishing rates (pKa = 7.2 +/- 0.1), and coincided with Vmax values for acetaldehyde reduction. This indicates that NADH-induced isomerization to a closed conformation may be rate-limiting for acetaldehyde reduction. The pH dependence of equilibrium NADH-binding constants fits best a model in which a single ionization leads to a loss in NADH affinity (pKa = 8.1 +/- 0. 2). Rate constants for isomerization from a closed to open conformation were also calculated, and these values coincided with Vmax for ethanol oxidation above pH 7.5. This suggests that NADH-induced isomerization of beta 369C from a closed to open conformation is rate-limiting for ethanol oxidation above pH 7.5.


Assuntos
Álcool Desidrogenase/química , Álcool Desidrogenase/metabolismo , Fígado/enzimologia , NAD/química , NAD/metabolismo , Acetaldeído/metabolismo , Sítios de Ligação , Etanol/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Isoenzimas/química , Isoenzimas/metabolismo , Cinética , Oxirredução
2.
J Biol Chem ; 271(29): 17057-61, 1996 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-8663387

RESUMO

The three-dimensional structure of the human beta3beta3 dimeric alcohol dehydrogenase (beta3) was determined to 2.4-A resolution. beta3 was crystallized as a ternary complex with the coenzyme NAD+ and the competitive inhibitor 4-iodopyrazole. beta3 is a polymorphic variant at ADH2 that differs from beta1 by a single amino acid substitution of Arg-369 --> Cys. The available x-ray structures of mammalian alcohol dehydrogenases show that the side chain of Arg-369 forms an ion pair with the NAD(H) pyrophosphate to stabilize the E.NAD(H) complex. The Cys-369 side chain of beta3 cannot form this interaction. The three-dimensional structures of beta3 and beta1 are virtually identical, with the exception that Cys-369 and two water molecules in beta3 occupy the position of Arg-369 in beta1. The two waters occupy the same positions as two guanidino nitrogens of Arg-369. Hence, the number of hydrogen bonding interactions between the enzyme and NAD(H) are the same for both isoenzymes. However, beta3 differs from beta1 by the loss of the electrostatic interaction between the NAD(H) pyrophosphate and the Arg-369 side chain. The equilibrium dissociation constants of beta3 for NAD+ and NADH are 350-fold and 4000-fold higher, respectively, than those for beta1. These changes correspond to binding free energy differences of 3.5 kcal/mol for NAD+ and 4.9 kcal/mol for NADH. Thus, the Arg-369 --> Cys substitution of beta3 isoenzyme destabilizes the interaction between coenzyme and beta3 alcohol dehydrogenase.


Assuntos
Álcool Desidrogenase/química , Álcool Desidrogenase/metabolismo , NAD/metabolismo , Conformação Proteica , Sequência de Aminoácidos , Arginina , Sequência de Bases , Sítios de Ligação , Calorimetria , Cristalografia por Raios X , Cisteína , DNA Complementar , Variação Genética , Humanos , Isoenzimas/química , Isoenzimas/metabolismo , Substâncias Macromoleculares , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Oligodesoxirribonucleotídeos , Mutação Puntual , Polimorfismo Genético , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...