Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(30): 13903-13912, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35867482

RESUMO

The isostructural heteroanionic compounds ß-LiAsS2-xSex (x = 0, 0.25, 1, 1.75, 2) show a positive correlation between selenium content and second-harmonic response and greatly outperform the industry standard AgGaSe2. These materials crystallize in the noncentrosymmetric space group Cc as one-dimensional 1/∞ [AsQ2]- (Q = S, Se, S/Se) chains consisting of corner-sharing AsQ3 trigonal pyramids with charge-balancing Li+ atoms interspersed between the chains. LiAsS2-xSex melts congruently for 0 ≤ x ≤ 1.75, but when the Se content exceeds x = 1.75, crystallization is complicated by a phase transition. This behavior is attributed to the ß- to α-phase transition present in LiAsSe2, which is observed in the Se-rich compositions. The band gap decreases with increasing Se content, starting at 1.63 eV (LiAsS2) and reaching 1.06 eV (ß-LiAsSe2). Second-harmonic generation measurements as a function of wavelength on powder samples of ß-LiAsS2-xSex show that these materials exhibit significantly higher nonlinearity than AgGaSe2 (d36 = 33 pm/V), reaching a maximum of 61.2 pm/V for LiAsS2. In comparison, single-crystal measurements for LiAsSSe yielded a deff = 410 pm/V. LiAsSSe, LiAsS0.25Se1.75, and ß-LiAsSe2 show phase-matching behavior for incident wavelengths exceeding 3 µm. The laser-induced damage thresholds from two-photon absorption processes are on the same order of magnitude as AgGaSe2, with S-rich materials slightly outperforming AgGaSe2 and Se-rich materials slightly underperforming AgGaSe2.

2.
J Am Chem Soc ; 143(43): 18204-18215, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34664968

RESUMO

The mixed cation compounds Na1-xKxAsSe2 (x = 0.8, 0.65, 0.5) and Na0.1K0.9AsS2 crystallize in the polar noncentrosymmetric space group Cc. The AAsQ2 (A = alkali metals, Q = S, Se) family features one-dimensional (1D) 1/∞[AQ2-] chains comprising corner-sharing pyramidal AQ3 units in which the packing of these chains is dependent on the alkali metals. The parallel 1/∞[AQ2-] chains interact via short As···Se contacts, which increase in length when the fraction of K atoms is increased. The increase in the As···Se interchain distance increases the band gap from 1.75 eV in γ-NaAsSe2 to 2.01 eV in Na0.35K0.65AsSe2, 2.07 eV in Na0.2K0.8AsSe2, and 2.18 eV in Na0.1K0.9AsS2. The Na1-xKxAsSe2 (x = 0.8, 0.65) compounds melt congruently at approximately 316 °C. Wavelength-dependent second harmonic generation (SHG) measurements on powder samples of Na1-xKxAsSe2 (x = 0.8, 0.65, 0.5) and Na0.1K0.9AsS2 suggest that Na0.2K0.8AsSe2 and Na0.1K0.9AsS2 have the highest SHG response and exhibit significantly higher laser-induced damage thresholds (LIDTs). Theoretical SHG calculations on Na0.5K0.5AsSe2 confirm its SHG response with the highest value of d33 = 22.5 pm/V (χ333(2) = 45.0 pm/V). The effective nonlinearity for a randomly oriented powder is calculated to be deff = 18.9 pm/V (χeff(2) = 37.8 pm/V), which is consistent with the experimentally obtained value of deff = 16.5 pm/V (χeff(2) = 33.0 pm/V). Three-photon absorption is the dominant mechanism for the optical breakdown of the compounds under intense excitation at 1580 nm, with Na0.2K0.8AsSe2 exhibiting the highest stability.

3.
J Phys Chem B ; 124(52): 11901-11909, 2020 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-33347757

RESUMO

The [2+2] cyclcoaddition (CA) and subsequent retroelectrocyclization (RE) reactions are useful in constructing nonplanar donor-acceptor chromophores that exhibit nonlinear optical properties and intramolecular charge-transfer transitions. However, both the infrared (IR) and visible-near IR (vis-NIR) spectroelectrochemical responses of CA-RE-derived chromophores are rarely explored in depth. Reported in this contribution is a comprehensive IR and vis-NIR spectroelectrochemical study of the CA-RE adducts of DMAP-C2n-NAPiPr of both tetracyanoethene (TCNE) and tetracyanoquinodimethane (TCNQ) and companion time-dependent density functional theory (TD-DFT) analysis of the bands observed. Specifically, DMAP-C2n-NAPiPr (1a, n = 1; 1b n = 2; DMAP = N,N-dimethylaniline; NAPiPr = N-isopropyl-1,8-naphthalimide) react with TCNE to yield the tetracyanobutadiene (TCBD) derivatives (2a and 2b, respectively) and with TCNQ to yield the dicyanoquinodimethane (DCNQ) derivatives (3a and 3b, respectively). IR spectroelectrochemical studies showed the emergence/intensification of new CN stretches upon reductions. Ultraviolet-vis-NIR (UV-vis-NIR) spectroelectrochemical study of 3 revealed a partial bleach of the charge-transfer (CT) bands, originally appearing in the neutral species, and the emergence of new CT bands originating from NAPiPr to the reduced DCNQ moiety. UV-vis-NIR spectroelectrochemical study of 2, surprisingly, indicated a very minimal change upon reductions. Dynamic changes were observed in the mid-IR absorption for C≡C and C≡N for both 2 and 3, indicative of enhanced asymmetry and the formation of ion pairs on the dicyano bridge. DFT and TD-DFT analyses were used to obtain the semi-quantitative pictures of the frontier orbitals of 1-3 and elucidate the origin of the transient features observed spectroelectrochemically for the 1e- and 2e- reduced species.

4.
Acta Crystallogr E Crystallogr Commun ; 74(Pt 4): 522-529, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29765759

RESUMO

Reported in this contribution are the synthesis and crystal structures of new mono- and bis-phenyl-acetyl-ides based on CoIII(DMC) (DMC is 5,12-dimethyl-1,4,8,11-tetra-aza-cyclo-tetra-deca-ne). Chlorido-(5,12-dimethyl-1,4,8,11-tetra-aza-cyclo-tetra-deca-ne)(phenyl-ethyn-yl)cobalt(III) chloride-aceto-nitrile-methanol (1/1/1), [Co(C8H5)Cl(C12H28N4)]Cl·CH3CN·CH3OH, 1, and (5,12-dimethyl-1,4,8,11-tetra-aza-cyclo-tetra-deca-ne)bis-(phenyl-ethyn-yl)cobalt(III) tri-fluoro-methane-sulfonate-di-chloro-methane (2/1), [Co(C8H5)2(C12H28N4)]2(CF3SO3)2·CH2Cl2, 2, were prepared under weak-base conditions in satisfactory yields. Single-crystal X-ray diffraction studies revealed that both 1 and 2 adopt a pseudo-octa-hedral symmetry in which the Cl-Co-C angles of 1 and C-Co-C of 2 range from 177.7 (2) to 178.0 (2)° and from 177.67 (9) to 179.67 (9)°, respectively. In both structures, the CoIII metal center is coordinated in the equatorial plane by four N atoms, in which the N-Co-N angles range from 85.6 (3) to 94.4 (3)°. The structure of 1 features two crystallographically independent mol-ecules in its triclinic cell (Z' = 2), which are related to each other by pseudo-monoclinic symmetry. The crystal investigated was twinned by a symmetry operator of the approximate double-volume C-centered cell (180° rotation around [201] of the actual triclinic cell), with a refined twin ratio of 0.798 (3) to 0.202 (3). Both methanol solvent mol-ecules in 1 are disordered, the major occupancy rates refined to 0.643 (16) and 0.357 (16). Compound 2 also contains two mol-ecules in the asymmetric unit, together with two tri-fluoro-methane-sulfonate anions [of which one is disordered; occupancy values of 0.503 (16) and 0.497 (16)] and a disordered di-chloro-methane [occupancy values of 0.545 (12) and 0.455 (12)].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...