Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 71(1): 230-4, 1999 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21662944

RESUMO

The glow discharge ionization source operated in the pulsed, or modulated, power mode affords a number of distinct advantages over its steady-state counterpart. It is well-known that pulsed plasma operation permits the application of higher instantaneous powers by allowing time for the sample to cool. This minimizes sample overheating while effecting higher sputtering yields and lower limits of detection. The presence of discrete time regimes affords the added advantage of temporal selectivity. Such selectivity allows the observation of analyte ions during a time regime in which their signal is at a maximum while that of electron ionized background species is declining. Significantly, time regimes are found when no background argon ion signals are observable but analyte ion signals remain. This means that discrimination against isobaric interferences arising from the discharge gas is possible. A prime example of the utility of this advantage arises in the determination of calcium with an argon glow discharge. Both the major argon and calcium isotopes are found at a nominal m/z of 40. Time-gated mass spectrometeric detection during the afterpeak time regime enables the ready determination of (40)Ca(+) in samples at the ppm level. A linear calibration curve is obtained that also demonstrates the elimination of the (40)Ar(+) signal from mass spectra obtained with either a dc or rf glow discharge ion source.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...