Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Phys Chem Au ; 3(2): 207-221, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36968446

RESUMO

Recent remarkable developments on nonfullerene solar cells have reached a photoelectric conversion efficiency (PCE) of 18% by tuning the band energy levels in small molecular acceptors. In this regard, understanding the impact of small donor molecules on nonpolymer solar cells is essential. Here, we systematically investigated mechanisms of solar cell performance using diketopyrrolopyrrole (DPP)-tetrabenzoporphyrin (BP) conjugates of C4-DPP-H2BP and C4-DPP-ZnBP, where C4 represents the butyl group substituted at the DPP unit as small p-type molecules, while an acceptor of [6,6]-phenyl-C61-buthylic acid methyl ester is employed. We clarified the microscopic origins of the photocarrier caused by phonon-assisted one-dimensional (1D) electron-hole dissociations at the donor-acceptor interface. Using a time-resolved electron paramagnetic resonance, we have characterized controlled charge-recombination by manipulating disorders in π-π donor stacking. This ensures carrier transport through stacking molecular conformations to suppress nonradiative voltage loss capturing specific interfacial radical pairs separated by 1.8 nm in bulk-heterojunction solar cells. We show that, while disordered lattice motions by the π-π stackings via zinc ligation are essential to enhance the entropy for charge dissociations at the interface, too much ordered crystallinity causes the backscattering phonon to reduce the open-circuit voltage by geminate charge-recombination.

2.
Chem Sci ; 11(11): 2934-2942, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-34122794

RESUMO

Singlet fission (SF) is expected to exceed the Shockley-Queisser theoretical limit of efficiency of organic solar cells. Transport of spin-entanglement in the triplet-triplet pair state via one singlet exciton is a promising phenomenon for several energy conversion applications including quantum information science. However, direct observation of electron spin polarization by transport of entangled spin-states has not been presented. In this study, time-resolved electron paramagnetic resonance has been utilized to observe the transportation of singlet and quintet characters generating correlated triplet-triplet (T + T) exciton-pair states by probing the electron spin polarization (ESP) generated in thin films of 6,13-bis(triisopropylsilylethynyl)pentacene. We have clearly demonstrated that the ESP detected at the resonance field positions of individual triplet excitons is dependent on the morphology and on the detection delay time after laser flash to cause SF. ESP was clearly explained by quantum superposition of singlet-triplet-quintet wavefunctions via picosecond triplet-exciton dissociation as the electron spin polarization transfer from strongly exchange-coupled singlet and quintet TT states to weakly-coupled spin-correlated triplet pair states. Although the coherent superposition of spin eigenstates was not directly detected, the present interpretation of the spin correlation of the separated T + T exciton pair may pave new avenues not only for elucidating the vibronic role in the de-coupling between two excitons but also for scalable quantum information processing using quick T + T dissociation via one-photon excitation.

3.
J Med Chem ; 60(22): 9142-9161, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29049886

RESUMO

Previous high throughput screening studies led to the discovery of two novel, nonlipid-like chemotypes as Toll-like receptor 4 (TLR4) agonists. One of these chemotypes, the pyrimido[5,4-b]indoles, was explored for structure-activity relationship trends relative to production of TLR4 dependent cytokines/chemokines, resulting in a semioptimized lead (compound 1) that provided a starting point for further optimization studies. In this report, compounds belonging to three areas of structural modification were evaluated for biological activity using murine and human TLR4 reporter cells, primary murine bone marrow derived dendritic cells, and human peripheral blood mononuclear cells. The compounds bearing certain aryl groups at the C8 position, such as phenyl (36) and ß-naphthyl (39), had potencies significantly greater than compound 1. Compound 36 displayed human TLR4 agonist activity at submicromolar concentrations. The computational analysis suggests that the improved potency of these C8-aryl derivatives may be the result of additional binding interactions at the interface of the TLR4/myeloid differentiation protein-2 (MD-2) complex.


Assuntos
Indóis/farmacologia , Pirimidinas/farmacologia , Receptor 4 Toll-Like/metabolismo , Animais , Humanos , Fatores Imunológicos/administração & dosagem , Fatores Imunológicos/síntese química , Fatores Imunológicos/farmacologia , Fatores Imunológicos/toxicidade , Indóis/administração & dosagem , Indóis/química , Indóis/toxicidade , Ligantes , Camundongos , Simulação de Acoplamento Molecular , Pirimidinas/administração & dosagem , Pirimidinas/química , Pirimidinas/toxicidade , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...