Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 42(3): 927-33, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18323124

RESUMO

Cylindrical colloidal-silver-impregnated ceramic filters for household (point-of-use) water treatment were manufactured and tested for performance in the laboratory with respect to flow rate and bacteria transport. Filters were manufactured by combining clay-rich soil with water, grog (previously fired clay), and flour, pressing them into cylinders, and firing them at 900 degrees C for 8 h. The pore-size distribution of the resulting ceramic filters was quantified by mercury porosimetry. Colloidal silver was applied to filters in different quantities and ways (dipping and painting). Filters were also tested without any colloidal-silver application. Hydraulic conductivity of the filters was quantified using changing-head permeability tests. [3H]H2O water was used as a conservative tracer to quantify advection velocities and the coefficient of hydrodynamic dispersion. Escherichia coli (E. coli) was used to quantify bacterial transport through the filters. Hydraulic conductivity and pore-size distribution varied with filter composition; hydraulic conductivities were on the order of 10(-5) cm/s and more than 50% of the pores for each filter had diameters ranging from 0.02 to 15 microm. The filters removed between 97.8% and 100% of the applied bacteria; colloidal-silver treatments improved filter performance, presumably by deactivation of bacteria. The quantity of colloidal silver applied per filter was more important to bacteria removal than the method of application. Silver concentrations in effluent filter water were initially greater than 0.1 mg/L, but dropped below this value after 200 min of continuous operation. These results indicate that colloidal-silver-impregnated ceramic filters, which can be made using primarily local materials and labor, show promise as an effective and sustainable point-of-use water treatment technology for the world's poorest communities.


Assuntos
Cerâmica/química , Coloides/química , Filtração/métodos , Prata/química , Purificação da Água/instrumentação , Escherichia coli/metabolismo , Porosidade , Solo
2.
J Colloid Interface Sci ; 309(2): 485-92, 2007 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-17292377

RESUMO

An experimental study was performed to determine the feasibility of using hexadecyltrimethylammonium bentonite clay (HDTMA-clay) and benzyltriethylammonium bentonite clay (BTEA-clay) for simultaneous sorption of benzene and one of four heavy metals (Pb, Cd, Zn and Hg). Specifically, the role of competition between benzene and each heavy metal was studied. The sorption of Pb, Cd, and Zn on both BTEA- and HDTMA-clay decreases in the presence of benzene relative to the sorption obtained without benzene present. This indicates that there is competition between Pb, Cd, and Zn and organic compounds during sorption onto both organoclays. On BTEA-clay, Cd, Pb and Zn sorption was reduced by 24, 37, and 51%, respectively. On HDTMA-clay, Cd, Pb, and Zn sorption was reduced by 25, 30, and 57%, respectively. Hg sorption was not affected either by the presence of benzene or by the organoclays used. The sorption of benzene onto BTEA-clay in the presence of Hg, Zn, Pb, and Cd was less than the sorption observed when no heavy metal was present. The presence of Hg resulted in the most significant decrease in sorption, causing a 59% reduction in benzene sorption. The presence of Zn, Pb, and Cd caused a 41, 35, and 31% reduction in benzene sorption, respectively. In general, sorption of benzene onto HDTMA-clay was not affected by the presence of the heavy metals, indicating there are no competitive effects observed with Zn, Cd, and Hg when HDTMA-clay was the sorbent. However, the presence of Pb did cause a 20% reduction in benzene sorption to HDTMA-clay. Both organoclays tested had dual sorptive properties for both heavy metals and an organic contaminant. While the competitive effects were greater for the BTEA clay, both organoclays are capable of simultaneously removing benzene and either Zn, Cd, Hg, or Pb from aqueous solution.


Assuntos
Silicatos de Alumínio/química , Bentonita/química , Benzeno/química , Metais Pesados/química , Compostos de Amônio Quaternário/química , Adsorção , Argila , Propriedades de Superfície
3.
J Hazard Mater ; 137(2): 1102-14, 2006 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-16647204

RESUMO

Sorption of four heavy metals (Pb, Cd, Zn and Hg) to calcium bentonite (Ca bentonite), hexadecyltrimethylammonium bentonite (HDTMA bentonite) and benzyltriethylammonium bentonite (BTEA bentonite) was measured as a function of the quaternary ammonium cation (QAC) loading at 25, 50 and 100% of the clay's cation-exchange capacity (CEC). The effects of pH on the surface charge of the clays and heavy metal sorption were also measured. Sorption of Cd, Pb, and Zn was non-linear and sorption of all three metals by HDTMA and BTEA bentonites decreased as the QAC loading increased from 25 to 100%. In most cases, sorption of these metals to 25% BTEA and 25% HDTMA bentonite was similar to or greater than sorption to Ca bentonite. Hg sorption was linear for both HDTMA and BTEA bentonite. No significant effect on Hg sorption was observed with increasing QAC loading on BTEA bentonite. However, an increase of Hg sorption was detected with increasing QAC loading on HDTMA bentonite. This behavior suggests that a process different than cation exchange was the predominant Hg sorption mechanism. Cd, Pb, and Zn sorption decreased with pH. However, this effect was stronger for Cd and Pb than Zn. Hg sorption varied inversely with pH. QAC loading affected the surface charge of the clays. Twenty-five and 50% loading of BTEA cations increased the negative charge on the clay's surface relative to the untreated clay, without affecting the zero point of charge (ZPC) of the clay. Increased QAC loading on HDTMA bentonite causes the surface charge to become more positive and the ZPC increased. One hundred percent of HDTMA bentonite maintained a positive surface charge over the range of pH values tested. The organoclays studied have considerable capacity for heavy metal sorption. Given that prior studies have demonstrated the strong sorption capacity of organoclays for nonionic organic pollutants, it is likely that organoclays can be useful sorbents for the treatment of effluent streams containing both organic contaminants and heavy metals.


Assuntos
Bentonita , Compostos de Cálcio , Concentração de Íons de Hidrogênio , Metais Pesados/farmacocinética , Compostos de Amônio Quaternário , Adsorção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...