Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 276(20): 16936-43, 2001 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-11279023

RESUMO

The Saccharomyces cerevisiae succinate dehydrogenase (SDH) of the mitochondrial electron transport chain oxidizes succinate and reduces ubiquinone. Using a random mutagenesis approach, we identified functionally important amino acid residues in one of the anchor subunits, Sdh4p. We analyzed three point mutations (F69V, S71A, and H99L) and one nonsense mutation (Y89OCH) that truncates the Sdh4p subunit at the third predicted transmembrane segment. The F69V and the S71A mutations result in greatly impaired respiratory growth in vivo and quinone reductase activities in vitro, with negligible effects on enzyme stability. In contrast, the Y89OCH and the H99L mutations elicit large structural perturbations that impair assembly as evidenced by reduced covalent FAD levels, membrane-associated succinate-phenazine methosulfate reductase activities, and thermal stability. We propose that the Phe-69 and the Ser-71 residues are involved in the formation of a quinone-binding site, whereas the His-99 residue is at the interface of the peripheral and the membrane domains. In addition, the properties of the Y89OCH mutation are consistent with the interpretation that the third transmembrane segment is not involved in catalysis but rather plays an important structural role. The mutant enzymes are differentially sensitive to a quinone analog inhibitor, providing further evidence for a two-quinone binding model in the yeast SDH.


Assuntos
2,4-Dinitrofenol/análogos & derivados , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , Oxirredutases/química , Oxirredutases/metabolismo , Quinonas/metabolismo , Saccharomyces cerevisiae/enzimologia , Succinato Desidrogenase/química , Succinato Desidrogenase/metabolismo , 2,4-Dinitrofenol/farmacologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Sítios de Ligação , Membrana Celular/enzimologia , Membrana Celular/ultraestrutura , Complexo II de Transporte de Elétrons , Genes Fúngicos , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multienzimáticos/genética , Mutagênese , Oxirredutases/genética , Estrutura Secundária de Proteína , Quinonas/química , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Succinato Desidrogenase/genética
2.
J Biol Chem ; 274(34): 23956-62, 1999 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-10446163

RESUMO

Succinate dehydrogenase (SDH) participates in the mitochondrial electron transport chain by oxidizing succinate to fumarate and transferring the electrons to ubiquinone. In yeast, it is composed of a catalytic dimer, comprising the Sdh1p and Sdh2p subunits, and a membrane domain, comprising two smaller hydrophobic subunits, Sdh3p and Sdh4p, which anchor the enzyme to the mitochondrial inner membrane. To investigate the role of the Sdh3p anchor polypeptide in enzyme assembly and catalysis, we isolated and characterized seven mutations in the SDH3 gene. Two mutations are premature truncations of Sdh3p with losses of one or three transmembrane segments. The remaining five are missense mutations that are clustered between amino acids 103 and 117, which are proposed to be located in transmembrane segment II or the matrix-localized loop connecting segments II and III. Three mutations, F103V, H113Q, and W116R, strongly but specifically impair quinone reductase activities but have only minor effects on enzyme assembly. The clustering of the mutations strongly suggests that a ubiquinone-binding site is associated with this region of Sdh3p. In addition, the biphasic inhibition of quinone reductase activity by a dinitrophenol inhibitor supports the hypothesis that two distinct quinone-binding sites are present in the yeast SDH.


Assuntos
NAD(P)H Desidrogenase (Quinona)/metabolismo , Saccharomyces cerevisiae/enzimologia , Succinato Desidrogenase/metabolismo , Ubiquinona/metabolismo , Sequência de Aminoácidos , Benzoquinonas/metabolismo , Sítios de Ligação , Grupo dos Citocromos b/metabolismo , Estabilidade Enzimática , Dados de Sequência Molecular , Mutagênese , Oxirredução , Succinato Desidrogenase/genética
3.
Biochim Biophys Acta ; 1411(1): 170-9, 1999 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-10216163

RESUMO

The yeast succinate dehydrogenase (SDH) is a tetramer of non-equivalent subunits, Sdh1p-Sdh4p, that couples the oxidation of succinate to the transfer of electrons to ubiquinone. One of the membrane anchor subunits, Sdh4p, has an unusual 30 amino acid extension at the C-terminus that is not present in SDH anchor subunits of other organisms. We identify Lys-132 in the Sdh4p C-terminal region as necessary for enzyme stability, ubiquinone reduction, and cytochrome b562 assembly in SDH. Five Lys-132 substituted SDH4 genes were constructed by site-directed mutagenesis and introduced into an SDH4 knockout strain. The mutants, K132E, K132G, K132Q, K132R, and K132V were characterized in vivo for respiratory growth and in vitro for ubiquinone reduction, enzyme stability, and cytochrome b562 assembly. Only the K132R substitution, which conserves the positive charge of Lys-132, produces a wild-type enzyme. The remaining four mutants do not affect the ability of SDH to oxidize succinate in the presence of the artificial electron acceptor, phenazine methosulfate, but impair quinone reductase activity, enzyme stability, and heme insertion. Our results suggest that the presence of a positive charge on residue 132 in the C-terminus of Sdh4p is critical for establishing a stable conformation in the SDH hydrophobic domain that is compatible with ubiquinone reduction and cytochrome b562 assembly. In addition, our data suggest that heme does not play an essential role in quinone reduction.


Assuntos
Proteínas de Escherichia coli , Saccharomyces cerevisiae/enzimologia , Succinato Desidrogenase/química , Grupo dos Citocromos b/química , Estabilidade Enzimática , Membranas Intracelulares/enzimologia , Cinética , Mutagênese Sítio-Dirigida , Mutação , Oxirredução , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Succinato Desidrogenase/genética , Ubiquinona/química
4.
FEBS Lett ; 442(2-3): 203-7, 1999 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-9929002

RESUMO

The Saccharomyces cerevisiae succinate-ubiquinone reductase or succinate dehydrogenase (SDH) is a tetramer of non-equivalent subunits encoded by the SDH1, SDH2, SDH3, and SDH4 genes. In most organisms, SDH contains one or two endogenous b-type hemes. However, it is widely believed that the yeast SDH does not contain heme. In this report, we demonstrate the presence of a stoichiometric amount of cytochrome b562 in the yeast SDH. The cytochrome is detected as a peak present in fumarate-oxidized, dithionite-reduced mitochondria. The peak is centered at 562 nm and is present at a heme:covalent FAD molar ratio of 0.92+/-0.11. The cytochrome is not detectable in mitochondria isolated from SDH3 and SDH4 deletion strains. These observations strongly support our conclusion that cytochrome b562 is a component of the yeast SDH.


Assuntos
Grupo dos Citocromos b/análise , Proteínas de Escherichia coli , Mitocôndrias/enzimologia , Complexos Multienzimáticos/química , Oxirredutases/química , Saccharomyces cerevisiae/enzimologia , Succinato Desidrogenase/química , Animais , Ditionita/metabolismo , Complexo II de Transporte de Elétrons , Flavina-Adenina Dinucleotídeo/metabolismo , Fumaratos/metabolismo , Proteínas Fúngicas/genética , Deleção de Genes , Membranas Intracelulares/efeitos dos fármacos , Membranas Intracelulares/enzimologia , Membranas Intracelulares/metabolismo , Ácido Láctico/metabolismo , Malonatos/farmacologia , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Oxirredução/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Análise Espectral
5.
J Biol Chem ; 272(50): 31382-8, 1997 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-9395469

RESUMO

The succinate dehydrogenase (SDH) of Saccharomyces cerevisiae is composed of four nonidentical subunits encoded by the nuclear genes SDH1, SDH2, SDH3, and SDH4. The hydrophilic subunits, SDH1p and SDH2p, comprise the catalytic domain involved in succinate oxidation. They are anchored to the inner mitochondrial membrane by two small, hydrophobic subunits, SDH3p and SDH4p, which are required for electron transfer and ubiquinone reduction. Comparison of the deduced primary sequence of the yeast SDH4p subunit to SDH4p subunits from other species reveals the presence of an unusual 25-30 amino acid carboxyl-terminal extension following the last predicted transmembrane domain. The extension is predicted to be on the cytoplasmic side of the inner mitochondrial membrane. To investigate the extension's function, three truncations were created and characterized. The results reveal that the carboxyl-terminal extension is necessary for respiration and growth on nonfermentable carbon sources, for ubiquinone reduction, and for enzyme stability. Combined with inhibitor studies using a ubiquinone analog, our results suggest that the extension and more specifically, residues 128-135 are involved in the formation of a ubiquinone binding site. Our findings support a two-ubiquinone binding site model for the S. cerevisiae SDH.


Assuntos
Proteínas Fúngicas/química , Isoenzimas/química , Saccharomyces cerevisiae/enzimologia , Succinato Desidrogenase/química , Ubiquinona/metabolismo , 2,4-Dinitrofenol/análogos & derivados , 2,4-Dinitrofenol/farmacologia , Sequência de Aminoácidos , Estabilidade Enzimática , Cinética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Oxirredução , Estrutura Secundária de Proteína , Quinonas/metabolismo , Alinhamento de Sequência , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...