Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Vet Res ; 70(12): 1526-35, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19951125

RESUMO

OBJECTIVE-To optimize the isolation and culture of mesenchymal stem cells (MSCs) from umbilical-cord blood (UCB), identify variables that predicted successful MSC isolation, and determine whether shipping, processing, and cryopreservation altered MSC viability, recovery rates, and expansion kinetics. SAMPLE POPULATION-UCB samples from 79 Thoroughbred and Quarter Horse mares. PROCEDURES-UCB samples were processed to reduce volume and remove RBCs. Nucleated cells (NCs) were cryopreserved or grown in various culture conditions to optimize MSC monolayer expansion and proliferation. Donor and UCB-sample factors were analyzed to determine their influence on the success of MSC isolation and monolayer expansion. RESULTS-MSCs capable of multilineage in vitro differentiation were expanded from > 80% of UCB samples. Automated UCB processing and temperature-controlled shipping facilitated sterile and standardized RBC reduction and NC enrichment from UCB samples. The number of NCs after UCB samples were processed was the sole variable that predicted successful MSC expansion. The UCB-derived MSCs and NCs were successfully cryopreserved and thawed with no decrease in cell recovery, viability, or MSC proliferation. The use of fibronectin-coated culture plates and reduction of incubator oxygen tension from 20% to 5% improved the MSC isolation rate. Some UCB-derived MSC clones proliferated for > 20 passages before senescence. Onset of senescence was associated with specific immunocytochemical changes. CONCLUSIONS AND CLINICAL RELEVANCE-Equine UCB samples appeared to be a rich source of readily obtainable, highly proliferative MSCs that could be banked for therapeutic use.


Assuntos
Sangue Fetal/citologia , Cavalos/sangue , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/fisiologia , Animais , Técnicas de Cultura de Células , Criopreservação
2.
J Biol Chem ; 284(21): 14117-25, 2009 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-19213727

RESUMO

Wnt11 signals through both canonical (beta-catenin) and non-canonical pathways and is up-regulated during osteoblast differentiation and fracture healing. In these studies, we evaluated the role of Wnt11 during osteoblastogenesis. Wnt11 overexpression in MC3T3E1 pre-osteoblasts increases beta-catenin accumulation and promotes bone morphogenetic protein (BMP)-induced expression of alkaline phosphatase and mineralization. Wnt11 dramatically increases expression of the osteoblast-associated genes Dmp1 (dentin matrix protein 1), Phex (phosphate-regulating endopeptidase homolog), and Bsp (bone sialoprotein). Wnt11 also increases expression of Rspo2 (R-spondin 2), a secreted factor known to enhance Wnt signaling. Overexpression of Rspo2 is sufficient for increasing Dmp1, Phex, and Bsp expression and promotes bone morphogenetic protein-induced mineralization. Knockdown of Rspo2 abrogates Wnt11-mediated osteoblast maturation. Antagonism of T-cell factor (Tcf)/beta-catenin signaling with dominant negative Tcf blocks Wnt11-mediated expression of Dmp1, Phex, and Rspo2 and decreases mineralization. However, dominant negative Tcf fails to block the osteogenic effects of Rspo2 overexpression. These studies show that Wnt11 signals through beta-catenin, activating Rspo2 expression, which is then required for Wnt11-mediated osteoblast maturation.


Assuntos
Calcificação Fisiológica , Diferenciação Celular , Osteoblastos/citologia , Osteoblastos/metabolismo , Trombospondinas/metabolismo , Proteínas Wnt/metabolismo , Animais , Proteína Morfogenética Óssea 2/farmacologia , Calcificação Fisiológica/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Osteoblastos/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição TCF/metabolismo , beta Catenina/metabolismo
3.
Bone ; 41(3): 331-9, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17613296

RESUMO

The Wnt/beta-catenin signaling pathway has emerged as a key regulator in bone development and bone homeostasis. Loss-of-function mutations in the Wnt co-receptor LRP5 result in osteoporosis and "activating" mutations in LRP5 result in high bone mass. Dickkopf-1 (DKK1) is a secreted Wnt inhibitor that binds LRP5 and LRP6 during embryonic development, therefore it is expected that a decrease in DKK1 will result in an increase in Wnt activity and a high bone mass phenotype. Dkk1-/- knockout mice are embryonic lethal, but mice with hypomorphic Dkk1d (doubleridge) alleles that express low amounts of Dkk1 are viable. In this study we generated an allelic series by crossing Dkk1+/- and Dkk1+/d mice resulting in the following genotypes with decreasing Dkk1 expression levels: +/+, +/d, +/- and d/-. Using muCT imaging we scanned dissected left femora and calvariae from 8-week-old mice (n=60). We analyzed the distal femur to represent trabecular bone and the femur diaphysis for cortical endochondral bone. A region of the parietal bones was used to analyze intramembranous bone of the calvaria. We found that trabecular bone volume is increased in Dkk1 mutant mice in a manner that is inversely proportional to the level of Dkk1 expression. Trabeculae number and thickness were significantly higher in the low Dkk1 expressing genotypes from both female and male mice. Similar results were found in cortical bone with an increase in cortical thickness and cross sectional area of the femur diaphysis that correlated with lower Dkk1 expression. No consistent differences were found in the calvaria measurements. Our results indicate that the progressive Dkk1 reduction increases trabecular and cortical bone mass and that even a 25% reduction in Dkk1 expression could produce significant increases in trabecular bone volume fraction. Thus DKK1 is a negative regulator of normal bone homeostasis in vivo. Our study suggests that manipulation of DKK1 function or expression may have therapeutic significance for the treatment of low bone mass disorders.


Assuntos
Densidade Óssea/fisiologia , Osso e Ossos/anatomia & histologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Animais , Osso e Ossos/metabolismo , Feminino , Peptídeos e Proteínas de Sinalização Intercelular/genética , Masculino , Camundongos , Camundongos Mutantes , RNA Mensageiro/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...