Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Pathog ; 2021: 6165950, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33623718

RESUMO

BACKGROUND: Chemotherapy plays a crucial role in malaria control. However, the main obstacle to treatment has been the rise of parasite resistance to most antimalarial drugs. Artemisinin-based combination therapies (ACTs) remain the most effective antimalarial medicines available today. However, malaria parasite tolerance to ACTs is now increasingly prevalent especially in Southeast Asia presenting the danger of the spread of ACTs resistance to other parts of the world. Consequently, this creates the need for alternative effective antimalarials. Therefore, this study sought out to determine antimalarial potential, safety, and resistance development of the extracts in a mouse model. METHOD: Methanolic and ethyl acetate extracts were obtained by solvent extraction. The extracts were assayed for acute toxicity in vivo. Additionally, the two extracts were evaluated for antimalarial activity in vivo against Plasmodium berghei ANKA strain by the 4-day suppressive test at 500, 250, and 125 mg/kg/day. Packed cell volume was evaluated to determine anemia manifestation. Finally, continuous drug pressure experiment at 500 mg/kg and DNA amplification via PCR were conducted. The amplicons underwent through Sanger sequencing. RESULTS: There was no toxicity realized in the animals at 2000 mg/kg. Importantly, high parasitemia suppression of 75.52% and 75.30% using a dose of 500 mg/kg of methanolic and ethyl acetate extracts, respectively, was noted. The extracts were able to reverse packed cell volume reduction. Nigella sativa-resistant phenotype was selected as delayed parasite clearance. However, there was no change in the nucleotide sequences of PbMDR1 and PbCRT genes. CONCLUSION: The results provide room for future exploitation of the plant as an antimalarial.

2.
J Pathog ; 2020: 7605730, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32148966

RESUMO

BACKGROUND: Plasmodium parasite resistance to artemisinin-based combination therapies (ACTs) calls for development of new, affordable, safe, and effective antimalarial drugs. Studies conducted previously on soybean extracts have established that they possess antimicrobial, anti-inflammatory, anticancerous, and antioxidant properties. The activity of such extracts on Plasmodium parasite resistance to artemisinin-based combination therapies (ACTs) calls for development of new, affordable, safe, and effective antimalarial drugs. Studies conducted previously on soybean extracts have established that they possess antimicrobial, anti-inflammatory, anticancerous, and antioxidant properties. The activity of such extracts on. OBJECTIVES: The aim of this study was to determine the antiplasmodial activity of soybean extracts using Plasmodium falciparum cultures, followed by an in vivo evaluation of safety and antimalarial activity of the extracts in Plasmodium berghei ANKA strain-infected mice. METHOD: Aqueous, methanol, and peptide extracts of soybean seeds were prepared. An in vitro evaluation of the extracts for antiplasmodial activity was carried out using two P. falciparum strains: D6, a chloroquine-sensitive Sierra Leone 1 strain and W2, a chloroquine-resistant Indochina 1 strain. Following the in vitro evaluation of the extracts for antiplasmodial activity was carried out using two in vivo evaluation of safety and antimalarial activity of the extracts in P. berghei ANKA strain. The two extracts were tested for their therapeutic potential (curative test). The peptide extract was further assessed to determine whether it could prevent the establishment of a P. berghei ANKA strain. The two extracts were tested for their therapeutic potential (curative test). The peptide extract was further assessed to determine whether it could prevent the establishment of a P. berghei ANKA strain. The two extracts were tested for their therapeutic potential (curative test). The peptide extract was further assessed to determine whether it could prevent the establishment of a. RESULTS: Peptide and methanol extracts showed good activity with IC50 of 19.97 ± 2.57 µg/ml and 10.14 ± 9.04 µg/ml and 10.14 ± 9.04 µg/ml and 10.14 ± 9.04 µg/ml and 10.14 ± 9.04 P < 0.001) in suppression with lower doses. CONCLUSION: The results show the presence of antimalarial properties in soybean extracts with higher curative activity when compared to the prophylactic activity. However, more research needs to be conducted on this plant to possibly establish lead compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA