Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 443, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33500411

RESUMO

Exposure to antibiotics in the first days of life is thought to affect various physiological aspects of neonatal development. Here, we investigate the long-term impact of antibiotic treatment in the neonatal period and early childhood on child growth in an unselected birth cohort of 12,422 children born at full term. We find significant attenuation of weight and height gain during the first 6 years of life after neonatal antibiotic exposure in boys, but not in girls, after adjusting for potential confounders. In contrast, antibiotic use after the neonatal period but during the first 6 years of life is associated with significantly higher body mass index throughout the study period in both boys and girls. Neonatal antibiotic exposure is associated with significant differences in the gut microbiome, particularly in decreased abundance and diversity of fecal Bifidobacteria until 2 years of age. Finally, we demonstrate that fecal microbiota transplant from antibiotic-exposed children to germ-free male, but not female, mice results in significant growth impairment. Thus, we conclude that neonatal antibiotic exposure is associated with a long-term gut microbiome perturbation and may result in reduced growth in boys during the first six years of life while antibiotic use later in childhood is associated with increased body mass index.


Assuntos
Antibacterianos/efeitos adversos , Infecções Bacterianas/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Transtornos do Crescimento/induzido quimicamente , Animais , Estatura/efeitos dos fármacos , Estatura/fisiologia , Índice de Massa Corporal , Peso Corporal/efeitos dos fármacos , Peso Corporal/fisiologia , Criança , Pré-Escolar , Modelos Animais de Doenças , Transplante de Microbiota Fecal , Fezes/microbiologia , Feminino , Seguimentos , Microbioma Gastrointestinal/fisiologia , Vida Livre de Germes , Transtornos do Crescimento/microbiologia , Transtornos do Crescimento/fisiopatologia , Humanos , Recém-Nascido , Mucosa Intestinal/microbiologia , Masculino , Camundongos , Gravidez , Fatores de Risco , Fatores Sexuais
2.
EMBO J ; 39(18): e104081, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32500941

RESUMO

CO2 is converted into biomass almost solely by the enzyme rubisco. The poor carboxylation properties of plant rubiscos have led to efforts that made it the most kinetically characterized enzyme, yet these studies focused on < 5% of its natural diversity. Here, we searched for fast-carboxylating variants by systematically mining genomic and metagenomic data. Approximately 33,000 unique rubisco sequences were identified and clustered into ≈ 1,000 similarity groups. We then synthesized, purified, and biochemically tested the carboxylation rates of 143 representatives, spanning all clusters of form-II and form-II/III rubiscos. Most variants (> 100) were active in vitro, with the fastest having a turnover number of 22 ± 1 s-1 -sixfold faster than the median plant rubisco and nearly twofold faster than the fastest measured rubisco to date. Unlike rubiscos from plants and cyanobacteria, the fastest variants discovered here are homodimers and exhibit a much simpler folding and activation kinetics. Our pipeline can be utilized to explore the kinetic space of other enzymes of interest, allowing us to get a better view of the biosynthetic potential of the biosphere.


Assuntos
Mineração de Dados , Bases de Dados de Ácidos Nucleicos , Ribulose-Bifosfato Carboxilase , Isoenzimas/classificação , Isoenzimas/genética , Ribulose-Bifosfato Carboxilase/classificação , Ribulose-Bifosfato Carboxilase/genética
3.
Philos Trans R Soc Lond B Biol Sci ; 362(1486): 1813-9, 2007 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-17510019

RESUMO

The coevolution of environment and living organisms is well known in nature. Here, it is suggested that similar processes can take place before the onset of life, where protocellular entities, rather than full-fledged living systems, coevolve along with their surroundings. Specifically, it is suggested that the chemical composition of the environment may have governed the chemical repertoire generated within molecular assemblies, compositional protocells, while compounds generated within these protocells altered the chemical composition of the environment. We present an extension of the graded autocatalysis replication domain (GARD) model--the environment exchange polymer GARD (EE-GARD) model. In the new model, molecules, which are formed in a protocellular assembly, may be exported to the environment that surrounds the protocell. Computer simulations of the model using an infinite-sized environment showed that EE-GARD assemblies may assume several distinct quasi-stationary compositions (composomes), similar to the observations in previous variants of the GARD model. A statistical analysis suggested that the repertoire of composomes manifested by the assemblies is independent of time. In simulations with a finite environment, this was not the case. Composomes, which were frequent in the early stages of the simulation disappeared, while others emerged. The change in the frequencies of composomes was found to be correlated with changes induced on the environment by the assembly. The EE-GARD model is the first GARD model to portray a possible time evolution of the composomes repertoire.


Assuntos
Evolução Biológica , Fenômenos Fisiológicos Celulares , Meio Ambiente , Simulação por Computador , Modelos Biológicos
4.
Appl Environ Microbiol ; 71(1): 344-53, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15640208

RESUMO

Bacteriochlorophyll a-containing aerobic anoxygenic phototrophs (AAnP) have been proposed to account for up to 11% of the total surface water microbial community and to potentially have great ecological importance in the world's oceans. Recently, environmental and genomic data based on analysis of the pufM gene identified the existence of alpha-proteobacteria as well as possible gamma-like proteobacteria among AAnP in the Pacific Ocean. Here we report on analyses of environmental samples from the Red and Mediterranean Seas by using pufM as well as the bchX and bchL genes as molecular markers. The majority of photosynthesis genes retrieved from these seas were related to Roseobacter-like AAnP sequences. Furthermore, the sequence of a novel photosynthetic operon organization from an uncultured Roseobacter-like bacterial artificial chromosome retrieved from the Red Sea is described. The data show the presence of Roseobacter-like bacteria in Red and Mediterranean Sea AAnP populations in the seasons analyzed.


Assuntos
Fotossíntese , Roseobacter/classificação , Roseobacter/crescimento & desenvolvimento , Água do Mar/microbiologia , Aerobiose , Sequência de Aminoácidos , Anaerobiose , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacterioclorofilas/metabolismo , Oceano Índico , Mar Mediterrâneo , Dados de Sequência Molecular , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Filogenia , Roseobacter/genética , Roseobacter/fisiologia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...