Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioinformatics ; 40(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38897662

RESUMO

MOTIVATION: Ribosome profiling is a widely-used technique for measuring ribosome occupancy at nucleotide resolution. However, the need to analyze this data at nucleotide resolution introduces unique challenges in data visualization and analyses. RESULTS: In this study, we introduce RiboGraph, a dedicated visualization tool designed to work with .ribo files, a specialized and efficient format for ribosome occupancy data. Unlike existing solutions that rely on large alignment files and time-consuming preprocessing steps, RiboGraph operates on a purpose designed compact file type. This efficiency allows for interactive, real-time visualization at ribosome-protected fragment length resolution. By providing an integrated toolset, RiboGraph empowers researchers to conduct comprehensive visual analysis of ribosome occupancy data. AVAILABILITY AND IMPLEMENTATION: Source code, step-by-step installation instructions and links to documentation are available on GitHub: https://github.com/ribosomeprofiling/ribograph. On the same page, we provide test files and a step-by-step tutorial highlighting the key features of RiboGraph.


Assuntos
Ribossomos , Software , Ribossomos/metabolismo , Biologia Computacional/métodos , Perfil de Ribossomos
2.
bioRxiv ; 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38260303

RESUMO

Ribosome profiling is a widely-used technique for measuring ribosome occupancy at nucleotide resolution. However, the need to analyze this data at nucleotide resolution introduces unique challenges in data visualization and analyses. In this study, we introduce RiboGraph, a dedicated visualization tool designed to work with .ribo files, a specialized and efficient format for ribosome occupancy data. Unlike existing solutions that rely on large alignment files and time-consuming preprocessing steps, RiboGraph operates on a purpose designed compact file type and eliminates the need for data preprocessing. This efficiency allows for interactive, real-time visualization at ribosome-protected fragment length resolution. By providing an integrated toolset, RiboGraph empowers researchers to conduct comprehensive visual analysis of ribosome occupancy data. Availability and Implementation: Source code, step-by-step installation instructions and links to documentation are available on GitHub: https://github.com/ribosomeprofiling/ribograph. On the same page, we provide test files and a step-by-step tutorial highlighting the key features of RiboGraph.

3.
bioRxiv ; 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37961559

RESUMO

Assembly of functional ribosomal subunits and successfully delivering them to the translating pool is a prerequisite for protein synthesis and cell growth. In S. cerevisiae, the ribosome assembly factor Reh1 binds to pre-60S subunits at a late stage during their cytoplasmic maturation. Previous work shows that the C-terminus of Reh1 inserts into the polypeptide exit tunnel (PET) of the pre-60S subunit. Unlike canonical assembly factors, which associate exclusively with pre-60S subunits, we observed that Reh1 sediments with polysomes in addition to free 60S subunits. We therefore investigated the intriguing possibility that Reh1 remains associated with 60S subunits after the release of the anti-association factor Tif6 and after subunit joining. Here, we show that Reh1-bound nascent 60S subunits associate with 40S subunits to form actively translating ribosomes. Using selective ribosome profiling, we found that Reh1-bound ribosomes populate open reading frames near start codons. Reh1-bound ribosomes are also strongly enriched for initiator tRNA, indicating they are associated with early elongation events. Using single particle cryo-electron microscopy to image cycloheximide-arrested Reh1-bound 80S ribosomes, we found that Reh1-bound 80S contain A site peptidyl tRNA, P site tRNA and eIF5A indicating that Reh1 does not dissociate from 60S until early stages of translation elongation. We propose that Reh1 is displaced by the elongating peptide chain. These results identify Reh1 as the last assembly factor released from the nascent 60S subunit during its pioneer round of translation.

4.
Nature ; 618(7967): 1057-1064, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37344592

RESUMO

Translation regulation is critical for early mammalian embryonic development1. However, previous studies had been restricted to bulk measurements2, precluding precise determination of translation regulation including allele-specific analyses. Here, to address this challenge, we developed a novel microfluidic isotachophoresis (ITP) approach, named RIBOsome profiling via ITP (Ribo-ITP), and characterized translation in single oocytes and embryos during early mouse development. We identified differential translation efficiency as a key mechanism regulating genes involved in centrosome organization and N6-methyladenosine modification of RNAs. Our high-coverage measurements enabled, to our knowledge, the first analysis of allele-specific ribosome engagement in early development. These led to the discovery of stage-specific differential engagement of zygotic RNAs with ribosomes and reduced translation efficiency of transcripts exhibiting allele-biased expression. By integrating our measurements with proteomics data, we discovered that ribosome occupancy in germinal vesicle-stage oocytes is the predominant determinant of protein abundance in the zygote. The Ribo-ITP approach will enable numerous applications by providing high-coverage and high-resolution ribosome occupancy measurements from ultra-low input samples including single cells.


Assuntos
Desenvolvimento Embrionário , Isotacoforese , Técnicas Analíticas Microfluídicas , Biossíntese de Proteínas , Perfil de Ribossomos , Ribossomos , Análise de Célula Única , Animais , Camundongos , Proteômica , Ribossomos/metabolismo , RNA Mensageiro/genética , Análise de Célula Única/métodos , Alelos , Técnicas Analíticas Microfluídicas/métodos , Oócitos/crescimento & desenvolvimento , Oócitos/metabolismo , Isotacoforese/métodos , Perfil de Ribossomos/métodos , Centrossomo , Zigoto/crescimento & desenvolvimento , Zigoto/metabolismo
5.
Nucleic Acids Res ; 51(12): 6461-6478, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37224531

RESUMO

In light of the numerous studies identifying post-transcriptional regulators on the surface of the endoplasmic reticulum (ER), we asked whether there are factors that regulate compartment specific mRNA translation in human cells. Using a proteomic survey of spatially regulated polysome interacting proteins, we identified the glycolytic enzyme Pyruvate Kinase M (PKM) as a cytosolic (i.e. ER-excluded) polysome interactor and investigated how it influences mRNA translation. We discovered that the PKM-polysome interaction is directly regulated by ADP levels-providing a link between carbohydrate metabolism and mRNA translation. By performing enhanced crosslinking immunoprecipitation-sequencing (eCLIP-seq), we found that PKM crosslinks to mRNA sequences that are immediately downstream of regions that encode lysine- and glutamate-enriched tracts. Using ribosome footprint protection sequencing, we found that PKM binding to ribosomes causes translational stalling near lysine and glutamate encoding sequences. Lastly, we observed that PKM recruitment to polysomes is dependent on poly-ADP ribosylation activity (PARylation)-and may depend on co-translational PARylation of lysine and glutamate residues of nascent polypeptide chains. Overall, our study uncovers a novel role for PKM in post-transcriptional gene regulation, linking cellular metabolism and mRNA translation.


Assuntos
Poli ADP Ribosilação , Biossíntese de Proteínas , Piruvato Quinase , Humanos , Glutamatos/análise , Glutamatos/genética , Glutamatos/metabolismo , Lisina/metabolismo , Proteômica , Piruvato Quinase/genética , Piruvato Quinase/análise , Piruvato Quinase/metabolismo , Ribossomos/metabolismo
6.
Nat Methods ; 18(9): 1046-1055, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34480151

RESUMO

Chromosome conformation capture (3C) assays are used to map chromatin interactions genome-wide. Chromatin interaction maps provide insights into the spatial organization of chromosomes and the mechanisms by which they fold. Hi-C and Micro-C are widely used 3C protocols that differ in key experimental parameters including cross-linking chemistry and chromatin fragmentation strategy. To understand how the choice of experimental protocol determines the ability to detect and quantify aspects of chromosome folding we have performed a systematic evaluation of 3C experimental parameters. We identified optimal protocol variants for either loop or compartment detection, optimizing fragment size and cross-linking chemistry. We used this knowledge to develop a greatly improved Hi-C protocol (Hi-C 3.0) that can detect both loops and compartments relatively effectively. In addition to providing benchmarked protocols, this work produced ultra-deep chromatin interaction maps using Micro-C, conventional Hi-C and Hi-C 3.0 for key cell lines used by the 4D Nucleome project.


Assuntos
Cromatina/química , Cromossomos Humanos/química , Reagentes de Ligações Cruzadas/química , Técnicas Genéticas , Linhagem Celular , Cromatina/metabolismo , Bases de Dados Factuais , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/fisiologia , Humanos
7.
RNA ; 27(9): 1025-1045, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34127534

RESUMO

Viruses rely on the host translation machinery to synthesize their own proteins. Consequently, they have evolved varied mechanisms to co-opt host translation for their survival. SARS-CoV-2 relies on a nonstructural protein, Nsp1, for shutting down host translation. However, it is currently unknown how viral proteins and host factors critical for viral replication can escape a global shutdown of host translation. Here, using a novel FACS-based assay called MeTAFlow, we report a dose-dependent reduction in both nascent protein synthesis and mRNA abundance in cells expressing Nsp1. We perform RNA-seq and matched ribosome profiling experiments to identify gene-specific changes both at the mRNA expression and translation levels. We discover that a functionally coherent subset of human genes is preferentially translated in the context of Nsp1 expression. These genes include the translation machinery components, RNA binding proteins, and others important for viral pathogenicity. Importantly, we uncovered a remarkable enrichment of 5' terminal oligo-pyrimidine (TOP) tracts among preferentially translated genes. Using reporter assays, we validated that 5' UTRs from TOP transcripts can drive preferential expression in the presence of Nsp1. Finally, we found that LARP1, a key effector protein in the mTOR pathway, may contribute to preferential translation of TOP transcripts in response to Nsp1 expression. Collectively, our study suggests fine-tuning of host gene expression and translation by Nsp1 despite its global repressive effect on host protein synthesis.


Assuntos
Interações Hospedeiro-Patógeno/genética , Biossíntese de Proteínas , Proteínas/química , Proteínas/genética , Proteínas não Estruturais Virais/genética , Regiões 5' não Traduzidas , Autoantígenos/genética , Autoantígenos/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Dobramento de Proteína , Pirimidinas , RNA Mensageiro/genética , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Ribossomos/genética , Ribossomos/virologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Proteínas não Estruturais Virais/metabolismo , Antígeno SS-B
8.
Genomics ; 113(4): 1895-1905, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33862179

RESUMO

Non-canonical intronic variants are a poorly characterized yet highly prevalent class of alterations associated with Mendelian disorders. Here, we report the first RNA expression and splicing analysis from a family whose members carry a non-canonical splice variant in an intron of RPL11 (c.396 +3A>G). This mutation is causative for Diamond Blackfan Anemia (DBA) in this family despite incomplete penetrance and variable expressivity. Our analyses revealed a complex pattern of disruptions with many novel junctions of RPL11. These include an RPL11 transcript that is translated with a late stop codon in the 3' untranslated region (3'UTR) of the main isoform. We observed that RPL11 transcript abundance is comparable among carriers regardless of symptom severity. Interestingly, both the small and large ribosomal subunit transcripts were significantly overexpressed in individuals with a history of anemia in addition to congenital abnormalities. Finally, we discovered that coordinated expression between mitochondrial components and RPL11 was lost in all carriers, which may lead to variable expressivity. Overall, this study highlights the importance of RNA splicing and expression analyses in families for molecular characterization of Mendelian diseases.


Assuntos
Anemia de Diamond-Blackfan , Genes Mitocondriais , Proteínas Ribossômicas , Anemia de Diamond-Blackfan/genética , Humanos , Mutação , Splicing de RNA , Doenças Raras/genética , Proteínas Ribossômicas/genética
9.
bioRxiv ; 2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32995776

RESUMO

Viruses rely on the host translation machinery to synthesize their own proteins. Consequently, they have evolved varied mechanisms to co-opt host translation for their survival. SARS-CoV-2 relies on a non-structural protein, Nsp1, for shutting down host translation. However, it is currently unknown how viral proteins and host factors critical for viral replication can escape a global shutdown of host translation. Here, using a novel FACS-based assay called MeTAFlow, we report a dose-dependent reduction in both nascent protein synthesis and mRNA abundance in cells expressing Nsp1. We perform RNA-Seq and matched ribosome profiling experiments to identify gene-specific changes both at the mRNA expression and translation level. We discover a functionally-coherent subset of human genes are preferentially translated in the context of Nsp1 expression. These genes include the translation machinery components, RNA binding proteins, and others important for viral pathogenicity. Importantly, we uncovered a remarkable enrichment of 5' terminal oligo-pyrimidine (TOP) tracts among preferentially translated genes. Using reporter assays, we validated that 5' UTRs from TOP transcripts can drive preferential expression in the presence of NSP1. Finally, we found that LARP1, a key effector protein in the mTOR pathway may contribute to preferential translation of TOP transcripts in response to Nsp1 expression. Collectively, our study suggests fine tuning of host gene expression and translation by Nsp1 despite its global repressive effect on host protein synthesis.

10.
Elife ; 92020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32915140

RESUMO

During mitosis chromosomes reorganise into highly compact, rod-shaped forms, thought to consist of consecutive chromatin loops around a central protein scaffold. Condensin complexes are involved in chromatin compaction, but the contribution of other chromatin proteins, DNA sequence and histone modifications is less understood. A large region of fission yeast DNA inserted into a mouse chromosome was previously observed to adopt a mitotic organisation distinct from that of surrounding mouse DNA. Here, we show that a similar distinct structure is common to a large subset of insertion events in both mouse and human cells and is coincident with the presence of high levels of heterochromatic H3 lysine nine trimethylation (H3K9me3). Hi-C and microscopy indicate that the heterochromatinised fission yeast DNA is organised into smaller chromatin loops than flanking euchromatic mouse chromatin. We conclude that heterochromatin alters chromatin loop size, thus contributing to the distinct appearance of heterochromatin on mitotic chromosomes.


Assuntos
Cromossomos , Heterocromatina , Mitose/genética , Animais , Cromossomos/química , Cromossomos/genética , Cromossomos/metabolismo , DNA Fúngico/química , DNA Fúngico/genética , DNA Fúngico/metabolismo , DNA Recombinante/química , DNA Recombinante/genética , DNA Recombinante/metabolismo , Células HeLa , Heterocromatina/química , Heterocromatina/genética , Heterocromatina/metabolismo , Histonas/química , Histonas/genética , Histonas/metabolismo , Humanos , Camundongos , Células NIH 3T3 , Schizosaccharomyces/genética , Transfecção
11.
Bioinformatics ; 36(9): 2929-2931, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31930375

RESUMO

SUMMARY: Ribosome occupancy measurements enable protein abundance estimation and infer mechanisms of translation. Recent studies have revealed that sequence read lengths in ribosome profiling data are highly variable and carry critical information. Consequently, data analyses require the computation and storage of multiple metrics for a wide range of ribosome footprint lengths. We developed a software ecosystem including a new efficient binary file format named 'ribo'. Ribo files store all essential data grouped by ribosome footprint lengths. Users can assemble ribo files using our RiboFlow pipeline that processes raw ribosomal profiling sequencing data. RiboFlow is highly portable and customizable across a large number of computational environments with built-in capabilities for parallelization. We also developed interfaces for writing and reading ribo files in the R (RiboR) and Python (RiboPy) environments. Using RiboR and RiboPy, users can efficiently access ribosome profiling quality control metrics, generate essential plots and carry out analyses. Altogether, these components create a software ecosystem for researchers to study translation through ribosome profiling. AVAILABILITY AND IMPLEMENTATION: For a quickstart, please see https://ribosomeprofiling.github.io. Source code, installation instructions and links to documentation are available on GitHub: https://github.com/ribosomeprofiling. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Ecossistema , Ribossomos , Proteínas , Análise de Sequência , Software
12.
Mol Cell ; 77(2): 324-337.e8, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31704182

RESUMO

A major challenge in biology is to understand how complex gene expression patterns are encoded in the genome. While transcriptional enhancers have been studied extensively, few transcriptional silencers have been identified, and they remain poorly understood. Here, we used a novel strategy to screen hundreds of sequences for tissue-specific silencer activity in whole Drosophila embryos. Almost all of the transcriptional silencers that we identified were also active enhancers in other cellular contexts. These elements are bound by more transcription factors than non-silencers. A subset of these silencers forms long-range contacts with promoters. Deletion of a silencer caused derepression of its target gene. Our results challenge the common practice of treating enhancers and silencers as separate classes of regulatory elements and suggest the possibility that thousands or more bifunctional CRMs remain to be discovered in Drosophila and 104-105 in humans.


Assuntos
Drosophila/genética , Elementos Facilitadores Genéticos/genética , Elementos Silenciadores Transcricionais/genética , Transcrição Gênica/genética , Animais , Animais Geneticamente Modificados/genética , Masculino
13.
Nat Cell Biol ; 21(11): 1393-1402, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31685986

RESUMO

Chromosome folding is modulated as cells progress through the cell cycle. During mitosis, condensins fold chromosomes into helical loop arrays. In interphase, the cohesin complex generates loops and topologically associating domains (TADs), while a separate process of compartmentalization drives segregation of active and inactive chromatin. We used synchronized cell cultures to determine how the mitotic chromosome conformation transforms into the interphase state. Using high-throughput chromosome conformation capture (Hi-C) analysis, chromatin binding assays and immunofluorescence, we show that, by telophase, condensin-mediated loops are lost and a transient folding intermediate is formed that is devoid of most loops. By cytokinesis, cohesin-mediated CTCF-CTCF loops and the positions of TADs emerge. Compartment boundaries are also established early, but long-range compartmentalization is a slow process and proceeds for hours after cells enter G1. Our results reveal the kinetics and order of events by which the interphase chromosome state is formed and identify telophase as a critical transition between condensin- and cohesin-driven chromosome folding.


Assuntos
Adenosina Trifosfatases/genética , Proteínas de Ciclo Celular/genética , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/genética , Complexos Multiproteicos/genética , Telófase , Adenosina Trifosfatases/metabolismo , Compartimento Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Transformada , Cromatina/ultraestrutura , Proteínas Cromossômicas não Histona/metabolismo , Mapeamento Cromossômico , Citocinese/genética , Proteínas de Ligação a DNA/metabolismo , Expressão Gênica , Células HeLa , Humanos , Interfase , Complexos Multiproteicos/metabolismo , Fase S , Coesinas
14.
Genome Biol ; 20(1): 57, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30890172

RESUMO

BACKGROUND: Hi-C is currently the most widely used assay to investigate the 3D organization of the genome and to study its role in gene regulation, DNA replication, and disease. However, Hi-C experiments are costly to perform and involve multiple complex experimental steps; thus, accurate methods for measuring the quality and reproducibility of Hi-C data are essential to determine whether the output should be used further in a study. RESULTS: Using real and simulated data, we profile the performance of several recently proposed methods for assessing reproducibility of population Hi-C data, including HiCRep, GenomeDISCO, HiC-Spector, and QuASAR-Rep. By explicitly controlling noise and sparsity through simulations, we demonstrate the deficiencies of performing simple correlation analysis on pairs of matrices, and we show that methods developed specifically for Hi-C data produce better measures of reproducibility. We also show how to use established measures, such as the ratio of intra- to interchromosomal interactions, and novel ones, such as QuASAR-QC, to identify low-quality experiments. CONCLUSIONS: In this work, we assess reproducibility and quality measures by varying sequencing depth, resolution and noise levels in Hi-C data from 13 cell lines, with two biological replicates each, as well as 176 simulated matrices. Through this extensive validation and benchmarking of Hi-C data, we describe best practices for reproducibility and quality assessment of Hi-C experiments. We make all software publicly available at http://github.com/kundajelab/3DChromatin_ReplicateQC to facilitate adoption in the community.


Assuntos
Genômica/normas , Sequenciamento de Nucleotídeos em Larga Escala/normas , Neoplasias/genética , Controle de Qualidade , Software , Humanos , Reprodutibilidade dos Testes , Células Tumorais Cultivadas
15.
Nat Commun ; 10(1): 30, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30604745

RESUMO

The inactive X chromosome (Xi) in female mammals adopts an atypical higher-order chromatin structure, manifested as a global loss of local topologically associated domains (TADs), A/B compartments and formation of two mega-domains. Here we demonstrate that the non-canonical SMC family protein, SmcHD1, which is important for gene silencing on Xi, contributes to this unique chromosome architecture. Specifically, allelic mapping of the transcriptome and epigenome in SmcHD1 mutant cells reveals the appearance of sub-megabase domains defined by gene activation, CpG hypermethylation and depletion of Polycomb-mediated H3K27me3. These domains, which correlate with sites of SmcHD1 enrichment on Xi in wild-type cells, additionally adopt features of active X chromosome higher-order chromosome architecture, including A/B compartments and partial restoration of TAD boundaries. Xi chromosome architecture changes also occurred following SmcHD1 knockout in a somatic cell model, but in this case, independent of Xi gene derepression. We conclude that SmcHD1 is a key factor in defining the unique chromosome architecture of Xi.


Assuntos
Proteínas Cromossômicas não Histona/genética , Metilação de DNA/genética , Ativação Transcricional/genética , Inativação do Cromossomo X , Alelos , Animais , Sistemas CRISPR-Cas , Linhagem Celular , Proteínas Cromossômicas não Histona/metabolismo , Ilhas de CpG , Éxons/genética , Feminino , Fibroblastos , Técnicas de Inativação de Genes , Histonas/genética , Histonas/metabolismo , Masculino , Camundongos , Mutação Puntual , Proteínas do Grupo Polycomb/metabolismo
16.
Mol Cell ; 72(4): 715-726.e3, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30415953

RESUMO

Compared to noncoding RNAs (ncRNAs), such as rRNAs and ribozymes, for which high-resolution structures abound, little is known about the tertiary structures of mRNAs. In eukaryotic cells, newly made mRNAs are packaged with proteins in highly compacted mRNA particles (mRNPs), but the manner of this mRNA compaction is unknown. Here, we developed and implemented RIPPLiT (RNA immunoprecipitation and proximity ligation in tandem), a transcriptome-wide method for probing the 3D conformations of RNAs stably associated with defined proteins, in this case, exon junction complex (EJC) core factors. EJCs multimerize with other mRNP components to form megadalton-sized complexes that protect large swaths of newly synthesized mRNAs from endonuclease digestion. Unlike ncRNPs, wherein strong locus-specific structures predominate, mRNPs behave more like flexible polymers. Polymer analysis of proximity ligation data for hundreds of mRNA species demonstrates that nascent and pre-translational mammalian mRNAs are compacted by their associated proteins into linear rod-like structures.


Assuntos
Precursores de RNA/ultraestrutura , Ribonucleoproteínas/genética , Ribonucleoproteínas/ultraestrutura , Núcleo Celular , Éxons , Células HEK293 , Humanos , Imunoprecipitação/métodos , Processamento de Proteína Pós-Traducional , Precursores de RNA/genética , Splicing de RNA , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/ultraestrutura , RNA não Traduzido , Spliceossomos , Transcrição Gênica
17.
Nat Genet ; 50(10): 1388-1398, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30202056

RESUMO

Structural variants (SVs) can contribute to oncogenesis through a variety of mechanisms. Despite their importance, the identification of SVs in cancer genomes remains challenging. Here, we present a framework that integrates optical mapping, high-throughput chromosome conformation capture (Hi-C), and whole-genome sequencing to systematically detect SVs in a variety of normal or cancer samples and cell lines. We identify the unique strengths of each method and demonstrate that only integrative approaches can comprehensively identify SVs in the genome. By combining Hi-C and optical mapping, we resolve complex SVs and phase multiple SV events to a single haplotype. Furthermore, we observe widespread structural variation events affecting the functions of noncoding sequences, including the deletion of distal regulatory sequences, alteration of DNA replication timing, and the creation of novel three-dimensional chromatin structural domains. Our results indicate that noncoding SVs may be underappreciated mutational drivers in cancer genomes.


Assuntos
Genoma Humano , Variação Estrutural do Genoma , Neoplasias/genética , Biologia de Sistemas/métodos , Células A549 , Linhagem Celular Tumoral , Mapeamento Cromossômico , DNA de Neoplasias/análise , DNA de Neoplasias/genética , Genes Neoplásicos , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Células K562 , Desequilíbrio de Ligação , Análise de Sequência de DNA/métodos , Integração de Sistemas
18.
Cell ; 173(4): 1031-1044.e13, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29727662

RESUMO

Full understanding of eukaryotic transcriptomes and how they respond to different conditions requires deep knowledge of all sites of intron excision. Although RNA sequencing (RNA-seq) provides much of this information, the low abundance of many spliced transcripts (often due to their rapid cytoplasmic decay) limits the ability of RNA-seq alone to reveal the full repertoire of spliced species. Here, we present "spliceosome profiling," a strategy based on deep sequencing of RNAs co-purifying with late-stage spliceosomes. Spliceosome profiling allows for unambiguous mapping of intron ends to single-nucleotide resolution and branchpoint identification at unprecedented depths. Our data reveal hundreds of new introns in S. pombe and numerous others that were previously misannotated. By providing a means to directly interrogate sites of spliceosome assembly and catalysis genome-wide, spliceosome profiling promises to transform our understanding of RNA processing in the nucleus, much as ribosome profiling has transformed our understanding mRNA translation in the cytoplasm.


Assuntos
Schizosaccharomyces/genética , Spliceossomos/metabolismo , Transcriptoma , Algoritmos , Íntrons , Splicing de RNA , RNA Fúngico/metabolismo , Ribonucleoproteínas/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Análise de Sequência de RNA , Sítio de Iniciação de Transcrição
19.
Genes Dev ; 31(22): 2264-2281, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29273679

RESUMO

The mammalian HoxD cluster lies between two topologically associating domains (TADs) matching distinct enhancer-rich regulatory landscapes. During limb development, the telomeric TAD controls the early transcription of Hoxd genes in forearm cells, whereas the centromeric TAD subsequently regulates more posterior Hoxd genes in digit cells. Therefore, the TAD boundary prevents the terminal Hoxd13 gene from responding to forearm enhancers, thereby allowing proper limb patterning. To assess the nature and function of this CTCF-rich DNA region in embryos, we compared chromatin interaction profiles between proximal and distal limb bud cells isolated from mutant stocks where various parts of this boundary region were removed. The resulting progressive release in boundary effect triggered inter-TAD contacts, favored by the activity of the newly accessed enhancers. However, the boundary was highly resilient, and only a 400-kb deletion, including the whole-gene cluster, was eventually able to merge the neighboring TADs into a single structure. In this unified TAD, both proximal and distal limb enhancers nevertheless continued to work independently over a targeted transgenic reporter construct. We propose that the whole HoxD cluster is a dynamic TAD border and that the exact boundary position varies depending on both the transcriptional status and the developmental context.


Assuntos
Genes Homeobox , Família Multigênica , Sequências Reguladoras de Ácido Nucleico , Animais , Fator de Ligação a CCCTC/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Elementos Facilitadores Genéticos , Botões de Extremidades/metabolismo , Camundongos , Deleção de Sequência , Transcrição Gênica , Coesinas
20.
Nucleic Acids Res ; 43(1): e2, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25505164

RESUMO

Deep sequencing of strand-specific cDNA libraries is now a ubiquitous tool for identifying and quantifying RNAs in diverse sample types. The accuracy of conclusions drawn from these analyses depends on precise and quantitative conversion of the RNA sample into a DNA library suitable for sequencing. Here, we describe an optimized method of preparing strand-specific RNA deep sequencing libraries from small RNAs and variably sized RNA fragments obtained from ribonucleoprotein particle footprinting experiments or fragmentation of long RNAs. Our approach works across a wide range of input amounts (400 pg to 200 ng), is easy to follow and produces a library in 2-3 days at relatively low reagent cost, all while giving the user complete control over every step. Because all enzymatic reactions were optimized and driven to apparent completion, sequence diversity and species abundance in the input sample are well preserved.


Assuntos
Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de RNA/métodos , DNA Circular/química , DNA de Cadeia Simples/química , Eletroforese em Gel de Poliacrilamida , MicroRNAs/química , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...