Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 3679, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35256662

RESUMO

L10-ordered FeNi alloy (tetrataenite), a promising candidate for rare-earth-free and low-cost permanent magnet applications, is attracting increasing attention from academic and industrial communities. Highly ordered single-phase L10-FeNi is difficult to synthesis efficiently because of its low chemical order-disorder transition temperature (200-320 °C). A non-equilibrium synthetic route utilizing a nitrogen topotactic reaction has been considered a valid approach, although the phase transformation mechanism is currently unknown. Herein, we investigated the basis of this reaction, namely the formation mechanism of the tetragonal FeNiN precursor phase during the nitridation of FeNi nanopowders. Detailed microstructure analysis revealed that the FeNiN precursor phase could preferentially nucleate at the nanotwinned region during nitridation and subsequently grow following a massive transformation, with high-index irrational orientation relationships and ledgewise growth motion detected at the migrating phase interface. This is the first report of a massive phase transformation detected in an Fe-Ni-N system and provides new insights into the phase transformation during the nitriding process. This work is expected to promote the synthetic optimization of fully ordered FeNi alloys for various magnetic applications.

2.
Sci Technol Adv Mater ; 22(1): 150-159, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33716571

RESUMO

Post-neodymium magnets that possess high heat resistance, coercivity, and (BH)max are desired for future-generation motors. However, the candidate materials for post-neodymium magnets such as Sm2Fe17N3 and metastable magnetic alloys have certain process-related problems: low sinterability due to thermal decomposition at elevated temperatures, deterioration of coercivity during sintering, and the poor coercivity of the raw powder. Various developments in powder processing are underway with the aim of overcoming these problems. So far, the development of advanced powder metallurgy techniques has achieved Sm2Fe17N3 anisotropic sintered magnets without coercivity deterioration, and advances in chemical powder synthesis techniques have been successful in producing Sm2Fe17N3 fine powders with huge coercivity. The challenge of a new powder process is expected to open the way to realizing post-neodymium magnets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...