Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 12104, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35840805

RESUMO

Photoisomerization of lipids has been well studied. As for the eyes, photoisomerization from 11-cis isomer to all-trans-retinal is well-known as the first step of the visual transduction in the photoreceptors. In addition to that, there would be other ocular lipids that undergo photoisomerization, which may be involved in ocular health and function. To explore any photoisomerizable lipids in the eyes, the nonirradiated and sunlight-irradiated eyeball extracts were subjected to liquid chromatography-mass spectrometry analysis, followed by the identification of the decreased lipid species in the irradiated extracts. Surprisingly, more than nine hundred lipid species were decreased in the irradiated extracts. Three lipid species, coenzyme Q10 (CoQ10), triglyceride(58:4), and coenzyme Q9, were decreased both significantly (p < 0.05) and by more than two-fold, where CoQ10 showed the most significant decrease. Later, photoisomerization was identified as the prominent cause underlying the decrease of CoQ10. Interestingly, CoQ10 in the sunlight-irradiated fresh eyeballs was also isomerized. Both the visible light and ultraviolet radiation were capable of producing CoQ10 isomer, while the latter showed rapid action. This study is believed to enhance our understanding of the biochemistry and photodamage of the eye and can potentially contribute to the advancement of opto-lipidomics.


Assuntos
Luz Solar , Raios Ultravioleta , Cromatografia Líquida , Lipídeos , Ubiquinona/análogos & derivados
2.
Sensors (Basel) ; 12(11): 14489-507, 2012 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-23202171

RESUMO

This paper presents an outdoors laser-based pedestrian tracking system using a group of mobile robots located near each other. Each robot detects pedestrians from its own laser scan image using an occupancy-grid-based method, and the robot tracks the detected pedestrians via Kalman filtering and global-nearest-neighbor (GNN)-based data association. The tracking data is broadcast to multiple robots through intercommunication and is combined using the covariance intersection (CI) method. For pedestrian tracking, each robot identifies its own posture using real-time-kinematic GPS (RTK-GPS) and laser scan matching. Using our cooperative tracking method, all the robots share the tracking data with each other; hence, individual robots can always recognize pedestrians that are invisible to any other robot. The simulation and experimental results show that cooperating tracking provides the tracking performance better than conventional individual tracking does. Our tracking system functions in a decentralized manner without any central server, and therefore, this provides a degree of scalability and robustness that cannot be achieved by conventional centralized architectures.


Assuntos
Lasers , Robótica , Caminhada , Humanos , Modelos Teóricos
3.
Genes Genet Syst ; 84(2): 147-52, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19556708

RESUMO

During the maintenance of the wild silkworm, Bombyx mandarina, a mutant phenotype exhibiting translucent skin was identified. Based on the crossing experiments with the domesticated silkworm, Bombyx mori, we found that the mutant was controlled by molybdenum cofactor sulfurase (MoCoS) gene. We designated the mutant ''Ozaki's translucent'' (og(Z)). We found a 2.1-kb deletion containing the transcription initiation site, exons 1 and 2, and the 5' end of exon 3 of the MoCoS gene. The transcript of the MoCoS gene was not detected in the og(Z) homozygote. We concluded that og(Z) is a complete loss-of-function allele generated by a disruption of the MoCoS gene.


Assuntos
Bombyx/genética , Proteínas de Insetos/genética , Mutação , Sulfurtransferases/genética , Animais , Bombyx/enzimologia , Bombyx/metabolismo , Clonagem Molecular , Coenzimas/metabolismo , Cruzamentos Genéticos , Feminino , Regulação Enzimológica da Expressão Gênica , Proteínas de Insetos/metabolismo , Larva/enzimologia , Larva/genética , Larva/metabolismo , Masculino , Metaloproteínas/metabolismo , Dados de Sequência Molecular , Cofatores de Molibdênio , Pteridinas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Sulfurtransferases/metabolismo
4.
J Colloid Interface Sci ; 298(2): 957-66, 2006 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-16430913

RESUMO

We have investigated the influence of the magnetic field strength, shear rate, and rotational Brownian motion on transport coefficients such as viscosity and diffusion coefficient, and also on the orientational distributions of rodlike particles of a dilute colloidal dispersion. The rodlike particle is modeled as a magnetic spheroidal particle which has a magnetic moment normal to the particle axis; such a particle may typically be a hematite particle. In the present study, an external magnetic field is applied in the direction normal to the shear plane of a simple shear flow. The basic equation of the orientational distribution function has been derived from the balance of torques and solved numerically. The results obtained here are summarized as follows. Although the orientational distribution function shows a sharp peak in the shear flow direction for a very strong magnetic field, such a peak is not restricted to the field direction alone, but continues in every direction of the shear plane. This is due to the characteristic particle motion that the particle can rotate around the axis of the magnetic moment in the shear plane, although the magnetic moment nearly points to the magnetic field direction. This particle motion in the shear plane causes negative values of the viscosity due to the magnetic field. The viscosity decreases, attains a minimum value, and then converges to zero as the field strength increases. Additionally, the diffusion coefficient is significantly influenced by such characteristic particle motion in the shear plane for a strong magnetic field.

5.
J Colloid Interface Sci ; 292(2): 581-90, 2005 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-16081082

RESUMO

We have investigated the influences of the magnetic field strength, shear rate, and random forces on transport coefficients such as viscosity and diffusion coefficient, and also on the orientational distributions of rodlike particles of a dilute colloidal dispersion. This dispersion is composed of ferromagnetic spheroidal particles with a magnetic moment normal to the particle axis. In the present analysis, these spheroidal particles are assumed to conduct the rotational Brownian motion in a simple shear flow as well as an external magnetic field. The basic equation of the orientational distribution function has been derived from the balance of the torques and solved numerically. The results obtained here are summarized as follows. For a very strong magnetic field, the rodlike particle is significantly restricted in the field direction, so that the particle points to a direction normal to the flow direction (and also to the magnetic field direction). However, the present particle does not exhibit a strong directional characteristic, which is one of the typical properties for the previous particle with a magnetic moment parallel to the particle axis. That is, the particle can rotate around the axis of the magnetic moment, although the magnetic moment nearly points to the field direction. The viscosity significantly increases with the field strength, as in the previous particle model. The particle of a larger aspect ratio leads to the larger increase in the viscosity, since such elongated particles induce larger resistance in a flow field. The diffusion coefficient under circumstances of an applied magnetic field is in reasonable agreement between theoretical and experimental results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...