Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 14175, 2024 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898077

RESUMO

Central nervous system tumors have resisted effective chemotherapy because most therapeutics do not penetrate the blood-tumor-brain-barrier. Nanomedicines between ~ 10 and 100 nm accumulate in many solid tumors by the enhanced permeability and retention effect, but it is controversial whether the effect can be exploited for treatment of brain tumors. PLX038A is a long-acting prodrug of the topoisomerase 1 inhibitor SN-38. It is composed of a 15 nm 4-arm 40 kDa PEG tethered to four SN-38 moieties by linkers that slowly cleave to release the SN-38. The prodrug was remarkably effective at suppressing growth of intracranial breast cancer and glioblastoma (GBM), significantly increasing the life span of mice harboring them. We addressed the important issue of whether the prodrug releases SN-38 systemically and then penetrates the brain to exert anti-tumor effects, or whether it directly penetrates the blood-tumor-brain-barrier and releases the SN-38 cargo within the tumor. We argue that the amount of SN-38 formed systemically is insufficient to inhibit the tumors, and show by PET imaging that a close surrogate of the 40 kDa PEG carrier in PLX038A accumulates and is retained in the GBM. We conclude that the prodrug penetrates the blood-tumor-brain-barrier, accumulates in the tumor microenvironment and releases its SN-38 cargo from within. Based on our results, we pose the provocative question as to whether the 40 kDa nanomolecule PEG carrier might serve as a "Trojan horse" to carry other drugs past the blood-tumor-brain-barrier and release them into brain tumors.


Assuntos
Barreira Hematoencefálica , Neoplasias Encefálicas , Irinotecano , Pró-Fármacos , Animais , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Irinotecano/farmacocinética , Barreira Hematoencefálica/metabolismo , Camundongos , Pró-Fármacos/farmacocinética , Pró-Fármacos/química , Pró-Fármacos/metabolismo , Humanos , Linhagem Celular Tumoral , Feminino , Ensaios Antitumorais Modelo de Xenoenxerto , Glioblastoma/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Camptotecina/análogos & derivados , Camptotecina/farmacocinética , Camptotecina/uso terapêutico
2.
ACS Appl Bio Mater ; 5(8): 3695-3702, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35857070

RESUMO

Lipid and micelle-based nanocarriers have been explored for anticancer drug delivery to improve accumulation and uptake in tumor tissue. As an experimental opportunity in this area, our lab has developed a protein-based micelle nanocarrier consisting of a hydrophilic intrinsically disordered protein (IDP) domain bound to a hydrophobic tail, termed IDP-2Yx2A. This construct can be used to encapsulate hydrophobic chemotherapeutics that would otherwise be too insoluble in water to be administered. In this study, we evaluate the in vivo efficacy of IDP-2Yx2A by delivering a highly potent but water-insoluble cancer drug, SN38, into glioblastoma multiforme (GBM) tumors via convection-enhanced delivery (CED). The protein carriers alone are shown to elicit minimal toxicity effects in mice; furthermore, they can encapsulate and deliver concentrations of SN38 that would otherwise be lethal without the carriers. CED administration of these drug-loaded micelles into mice bearing U251-MG GBM xenografts resulted in slowed tumor growth and significant increases in median survival times compared to nonencapsulated SN38 and PBS controls.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Proteínas Intrinsicamente Desordenadas , Animais , Humanos , Camundongos , Neoplasias Encefálicas/tratamento farmacológico , Convecção , Excipientes , Glioblastoma/tratamento farmacológico , Micelas , Água
3.
ACS Appl Mater Interfaces ; 13(46): 54739-54752, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34752058

RESUMO

Boron neutron capture therapy (BNCT) is an encouraging therapeutic modality for cancer treatment. Prostate-specific membrane antigen (PSMA) is a cell membrane protein that is abundantly overexpressed in prostate cancer and can be targeted with radioligand therapies to stimulate clinical responses in patients. In principle, a spatially targeted neutron beam together with specifically targeted PSMA ligands could enable prostate cancer-targeted BNCT. Thus, we developed and tested PSMA-targeted poly(lactide-co-glycolide)-block-poly(ethylene glycol) (PLGA-b-PEG) nanoparticles (NPs) loaded with carborane and tethered to the radiometal chelator deferoxamine B (DFB) for simultaneous positron emission tomography (PET) imaging and selective delivery of boron to prostate cancer. Monomeric PLGA-b-PEGs were covalently functionalized with either DFB or the PSMA ligand ACUPA. Different nanoparticle formulations were generated by nanoemulsification of the corresponding unmodified and DFB- or ACUPA-modified monomers in varying percent fractions. The nanoparticles were efficiently labeled with 89Zr and were subjected to in vitro and in vivo evaluation. The optimized DFB(25)ACUPA(75) NPs exhibited strong in vitro binding to PSMA in direct binding and competition radioligand binding assays in PSMA(+) PC3-Pip cells. [89Zr]DFB(25) NPs and [89Zr]DFB(25)ACUPA(75) NPs were injected to mice with bilateral PSMA(-) PC3-Flu and PSMA(+) PC3-Pip dual xenografts. The NPs demonstrated twofold superior accumulation in PC3-Pip tumors to that of PC3-Flu tumors with a tumor/blood ratio of 25; however, no substantial effect of the ACUPA ligands was detected. Moreover, fast release of carborane from the NPs was observed, resulting in a low boron delivery to tumors in vivo. In summary, these data demonstrate the synthesis, characterization, and initial biological assessment of PSMA-targeted, carborane-loaded PLGA-b-PEG nanoparticles and establish the foundation for future efforts to enable their best use in vivo.


Assuntos
Antineoplásicos/farmacologia , Compostos de Boro/farmacologia , Desferroxamina/farmacologia , Nanopartículas/química , Antígeno Prostático Específico/antagonistas & inibidores , Neoplasias da Próstata/tratamento farmacológico , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Compostos de Boro/síntese química , Compostos de Boro/química , Terapia por Captura de Nêutron de Boro , Desferroxamina/química , Humanos , Masculino , Camundongos , Camundongos Nus , Estrutura Molecular , Células PC-3 , Polietilenoglicóis/química , Poliglactina 910/química , Tomografia por Emissão de Pósitrons , Antígeno Prostático Específico/metabolismo , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/metabolismo , Nanomedicina Teranóstica , Células Tumorais Cultivadas
4.
Cureus ; 13(8): e17595, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34646647

RESUMO

Introduction The standard treatment for glioblastoma (GBM) patients is surgical tumor resection, followed by radiation and chemotherapy with temozolomide (TMZ). Unfortunately, 60% of newly diagnosed GBM patients express high levels of the DNA repair enzyme O6-methylguanine-DNA methyltransferase (MGMT) and are TMZ-resistant, and all patients eventually become refractory to treatment. The blood-brain barrier (BBB) is an obstacle to the delivery of chemotherapeutic agents to GBM, and BBB-permeable agents that are efficacious in TMZ-resistant and refractory patients are needed. The large amino acid transporter 1 (LAT1) is expressed on the BBB and in GBM and is detected at much lower levels in normal brain tissue. A LAT1-selective therapeutic would potentially target brain tumors while avoiding uptake by healthy tissue. Methods We report a novel chemical entity (QBS10072S) that combines a potent cytotoxic chemotherapeutic domain (tertiary N-bis(2-chloroethyl)amine) with the structural features of a selective LAT1 substrate and tested it against GBM models in vitro and in vivo. For in vitro studies, DNA damage was assessed with a gamma H2A.X antibody and cell viability was assessed by WST-1 assay and/or CellTiter-Glo assay. For in vivo studies, QBS10072S (with or without radiation) was tested in orthotopic glioblastoma xenograft models, using overall survival and tumor size (as measured by bioluminescence), as endpoints. Results QBS10072S is 50-fold more selective for LAT1 vs. LAT2 in transport assays and demonstrates significant growth suppression in vitro of LAT1-expressing GBM cell lines. Unlike TMZ, QBS10072S is cytotoxic to cells with both high and low levels of MGMT expression. In orthotopic GBM xenografts, QBS10072S treatment significantly delayed tumorigenesis and prolonged animal survival compared to the vehicle without adverse effects. Conclusion QBS10072S is a novel BBB-permeable chemotherapeutic agent with the potential to treat TMZ-resistant and recurrent GBM as monotherapy or in combination with radiation treatment.

5.
ACS Biomater Sci Eng ; 7(1): 196-206, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33338381

RESUMO

The fate of nanocarrier materials at the cellular level constitutes a critical checkpoint in the development of effective nanomedicines, determining whether tissue level accumulation results in therapeutic benefit. The cytotoxicity and cell internalization of ∼18 nm 3-helix micelle (3HM) loaded with doxorubicin (DOX) were analyzed in patient-derived glioblastoma (GBM) cells in vitro. The half-maximal inhibitory concentration (IC50) of 3HM-DOX increased to 6.2 µg/mL from <0.5 µg/mL for free DOX in patient-derived GBM6 cells, to 15.0 µg/mL from 6.5 µg/mL in U87MG cells, and to 21.5 µg/mL from ∼0.5 µg/mL in LN229 cells. Modeling analysis of previous 3HM biodistribution results predicts that these cytotoxic concentrations are achievable with intravenous injection in rodent GBM models. 3HM-DOX formulations were internalized intact and underwent intracellular trafficking distinct from free DOX. 3HM was quantified to have an internalization half-life of 12.6 h in GBM6 cells, significantly longer than that reported for some liposome and polymer systems. 3HM was found to traffic through active endocytic processes, with clathrin-mediated endocytosis being the most involved of the pathways studied. Inhibition studies suggest substantial involvement of receptor recognition in 3HM uptake. As the 3HM surface is PEG-ylated with no targeting functionalities, protein corona-cell surface interactions, such as the apolipoprotein-low-density lipoprotein receptor, are expected to initiate internalization. The present work gives insights into the cytotoxicity, pharmacodynamics, and cellular interactions of 3HM and 3HM-DOX relevant for ongoing preclinical studies. This work also contributes to efforts to develop predictive mathematical models tracking the accumulation and biodistribution kinetics at a systemic level.


Assuntos
Antineoplásicos , Micelas , Transporte Biológico , Doxorrubicina , Humanos , Distribuição Tecidual
6.
Cell Stem Cell ; 26(1): 48-63.e6, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31901251

RESUMO

Glioblastoma is a devastating form of brain cancer. To identify aspects of tumor heterogeneity that may illuminate drivers of tumor invasion, we created a glioblastoma tumor cell atlas with single-cell transcriptomics of cancer cells mapped onto a reference framework of the developing and adult human brain. We find that multiple GSC subtypes exist within a single tumor. Within these GSCs, we identify an invasive cell population similar to outer radial glia (oRG), a fetal cell type that expands the stem cell niche in normal human cortex. Using live time-lapse imaging of primary resected tumors, we discover that tumor-derived oRG-like cells undergo characteristic mitotic somal translocation behavior previously only observed in human development, suggesting a reactivation of developmental programs. In addition, we show that PTPRZ1 mediates both mitotic somal translocation and glioblastoma tumor invasion. These data suggest that the presence of heterogeneous GSCs may underlie glioblastoma's rapid progression and invasion.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Adulto , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Células Ependimogliais , Glioblastoma/genética , Humanos , Células-Tronco Neoplásicas , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores
7.
Mol Pharm ; 16(9): 3831-3841, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31381351

RESUMO

Boron neutron capture therapy (BNCT) is a therapeutic modality which has been used for the treatment of cancers, including brain and head and neck tumors. For effective treatment via BNCT, efficient and selective delivery of a high boron dose to cancer cells is needed. Prostate-specific membrane antigen (PSMA) is a target for prostate cancer imaging and drug delivery. In this study, we conjugated boronic acid or carborane functional groups to a well-established PSMA inhibitor scaffold to deliver boron to prostate cancer cells and prostate tumor xenograft models. Eight boron-containing PSMA inhibitors were synthesized. All of these compounds showed a strong binding affinity to PSMA in a competition radioligand binding assay (IC50 from 555.7 to 20.3 nM). Three selected compounds 1a, 1d, and 1f were administered to mice, and their in vivo blocking of 68Ga-PSMA-11 uptake was demonstrated through a positron emission tomography (PET) imaging and biodistribution experiment. Biodistribution analysis demonstrated boron uptake of 4-7 µg/g in 22Rv1 prostate xenograft tumors and similar tumor/muscle ratios compared to the ratio for the most commonly used BNCT compound, 4-borono-l-phenylalanine (BPA). Taken together, these data suggest a potential role for PSMA targeted BNCT agents in prostate cancer therapy following suitable optimization.


Assuntos
Antígenos de Superfície/metabolismo , Terapia por Captura de Nêutron de Boro/métodos , Ácidos Borônicos/química , Ácidos Borônicos/farmacocinética , Sistemas de Liberação de Medicamentos/métodos , Glutamato Carboxipeptidase II/antagonistas & inibidores , Glutamato Carboxipeptidase II/metabolismo , Neoplasias da Próstata/radioterapia , Animais , Compostos de Boro/química , Compostos de Boro/farmacocinética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ácido Edético/análogos & derivados , Ácido Edético/farmacocinética , Isótopos de Gálio , Radioisótopos de Gálio , Humanos , Concentração Inibidora 50 , Ligantes , Masculino , Camundongos , Camundongos Nus , Oligopeptídeos/farmacocinética , Fenilalanina/análogos & derivados , Fenilalanina/química , Fenilalanina/farmacocinética , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias da Próstata/patologia , Radiossensibilizantes/química , Radiossensibilizantes/farmacocinética , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Nanomaterials (Basel) ; 8(12)2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30563038

RESUMO

Glioblastoma is a particularly challenging cancer, as there are currently limited options for treatment. New delivery routes are being explored, including direct intratumoral injection via convection-enhanced delivery (CED). While promising, convection-enhanced delivery of traditional chemotherapeutics such as doxorubicin (DOX) has seen limited success. Several studies have demonstrated that attaching a drug to polymeric nanoscale materials can improve drug delivery efficacy via CED. We therefore set out to evaluate a panel of morphologically distinct protein nanoparticles for their potential as CED drug delivery vehicles for glioblastoma treatment. The panel consisted of three different virus-like particles (VLPs), MS2 spheres, tobacco mosaic virus (TMV) disks and nanophage filamentous rods modified with DOX. While all three VLPs displayed adequate drug delivery and cell uptake in vitro, increased survival rates were only observed for glioma-bearing mice that were treated via CED with TMV disks and MS2 spheres conjugated to doxorubicin, with TMV-treated mice showing the best response. Importantly, these improved survival rates were observed after only a single VLP⁻DOX CED injection several orders of magnitude smaller than traditional IV doses. Overall, this study underscores the potential of nanoscale chemotherapeutic CED using virus-like particles and illustrates the need for further studies into how the overall morphology of VLPs influences their drug delivery properties.

9.
J Neurooncol ; 133(2): 257-264, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28434113

RESUMO

Electromagnetic fields (EMF) in the radio frequency energy (RFE) range can affect cells at the molecular level. Here we report a technology that can record the specific RFE signal of a given molecule, in this case the siRNA of epidermal growth factor receptor (EGFR). We demonstrate that cells exposed to this EGFR siRNA RFE signal have a 30-70% reduction of EGFR mRNA expression and ~60% reduction in EGFR protein expression vs. control treated cells. Specificity for EGFR siRNA effect was confirmed via RNA microarray and antibody dot blot array. The EGFR siRNA RFE decreased cell viability, as measured by Calcein-AM measures, LDH release and Caspase 3 cleavage, and increased orthotopic xenograft survival. The outcomes of this study demonstrate that an RFE signal can induce a specific siRNA-like effect on cells. This technology opens vast possibilities of targeting a broader range of molecules with applications in medicine, agriculture and other areas.


Assuntos
Radiação Eletromagnética , Receptores ErbB/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Glioma/metabolismo , Apoptose/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Receptores ErbB/genética , Glioma/genética , Humanos , Antígeno Ki-67/metabolismo , Interferência de RNA/fisiologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
10.
Cancer Res ; 75(24): 5355-66, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26573800

RESUMO

The treatment of glioblastoma (GBM) remains challenging in part due to the presence of stem-like tumor-propagating cells that are resistant to standard therapies consisting of radiation and temozolomide. Among the novel and targeted agents under evaluation for the treatment of GBM are BRAF/MAPK inhibitors, but their effects on tumor-propagating cells are unclear. Here, we characterized the behaviors of CD133(+) tumor-propagating cells isolated from primary GBM cell lines. We show that CD133(+) cells exhibited decreased sensitivity to the antiproliferative effects of BRAF/MAPK inhibition compared to CD133(-) cells. Furthermore, CD133(+) cells exhibited an extended G2-M phase and increased polarized asymmetric cell divisions. At the molecular level, we observed that polo-like kinase (PLK) 1 activity was elevated in CD133(+) cells, prompting our investigation of BRAF/PLK1 combination treatment effects in an orthotopic GBM xenograft model. Combined inhibition of BRAF and PLK1 resulted in significantly greater antiproliferative and proapoptotic effects beyond those achieved by monotherapy (P < 0.05). We propose that PLK1 activity controls a polarity checkpoint and compensates for BRAF/MAPK inhibition in CD133(+) cells, suggesting the need for concurrent PLK1 inhibition to improve antitumor activity against a therapy-resistant cell compartment.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/patologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Glioblastoma/patologia , Células-Tronco Neoplásicas/patologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Animais , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Polaridade Celular/efeitos dos fármacos , Separação Celular , Citometria de Fluxo , Imunofluorescência , Humanos , Camundongos , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ensaios Antitumorais Modelo de Xenoenxerto , Quinase 1 Polo-Like
11.
J Transl Med ; 12: 345, 2014 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-25464980

RESUMO

BACKGROUND: GL261 cells are murine glioma cells that demonstrate proliferation, invasion, and angiogenesis when implanted in syngeneic C57BL/6 mice, providing a highly useful immunocompetent animal model of glioblastoma. Modification of tumor cells for luciferase expression enables non-invasive monitoring of orthotopic tumor growth, and has proven useful for studying glioblastoma response to novel therapeutics. However, tumor modification for luciferase has the potential for evoking host immune response against otherwise syngeneic tumor cells, thereby mitigating the tumor cells' value for tumor immunology and immunotherapy studies. METHODS: GL261 cells were infected with lentivirus containing a gene encoding firefly luciferase (GL261.luc). In vitro proliferation of parental (unmodified) GL261 and GL261.luc was measured on days 0, 1, 2, 4, and 7 following plating, and the expression of 82 mouse cytokines and chemokines were analyzed by RT-PCR array. Cell lines were also evaluated for differences in invasion and migration in modified Boyden chambers. GL261 and GL261.luc cells were then implanted intracranially in C57BL/6 mice, with GL261.luc tumor growth monitored by quantitative bioluminescence imaging, and all mice were followed for survival to compare relative malignancy of tumor cells. RESULTS: No difference in proliferation was indicated for GL261 vs. GL261.luc cells (p>0.05). Of the 82 genes examined by RT-PCR array, seven (9%) exhibited statistically significant change after luciferase modification. Of these, only three changed by greater than 2-fold: BMP-2, IL-13, and TGF-ß2. No difference in invasion (p=0.67) or migration (p=0.26) was evident between modified vs. unmodified cells. GL261.luc cell luminescence was detectable in the brains of C57BL/6 mice at day 5 post-implantation, and tumor bioluminescence increased exponentially to day 19. Median overall survival was 20.2 days versus 19.7 days for mice receiving implantation with GL261 and GL261.luc, respectively (p=0.62). Histopathologic analysis revealed no morphological difference between tumors, and immunohistochemical analysis showed no significant difference for staining of CD3, Ki67, or CD31 (p>0.05 for all). CONCLUSIONS: Luciferase expression in GL261 murine glioma cells does not affect GL261 proliferation, invasion, cytokine expression, or in vivo growth. Luciferase modification increases their utility for studying tumor immunology and immunotherapeutic approaches for treating glioblastoma.


Assuntos
Neoplasias Encefálicas/patologia , Glioma/patologia , Luciferases/genética , Animais , Neoplasias Encefálicas/imunologia , Divisão Celular , Linhagem Celular Tumoral , Citocinas/imunologia , Glioma/imunologia , Camundongos
12.
Mol Cancer Ther ; 13(12): 2919-29, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25313012

RESUMO

This report describes results from our analysis of the activity and biodistribution of a novel pan-ERBB inhibitor, NT113, when used in treating mice with intracranial glioblastoma (GBM) xenografts. Approaches used in this investigation include: bioluminescence imaging (BLI) for monitoring intracranial tumor growth and response to therapy; determination of survival benefit from treatment; analysis of tumor IHC reactivity for indication of treatment effect on proliferation and apoptotic response; Western blot analysis for determination of effects of treatment on ERBB and ERBB signaling mediator activation; and high-performance liquid chromatography for determination of NT113 concentration in tissue extracts from animals receiving oral administration of inhibitor. Our results show that NT113 is active against GBM xenografts in which wild-type EGFR or EGFRvIII is highly expressed. In experiments including lapatinib and/or erlotinib, NT113 treatment was associated with the most substantial improvement in survival, as well as the most substantial tumor growth inhibition, as indicated by BLI and IHC results. Western blot analysis results indicated that NT113 has inhibitory activity, both in vivo and in vitro, on ERBB family member phosphorylation, as well as on the phosphorylation of downstream signaling mediator Akt. Results from the analysis of animal tissues revealed significantly higher NT113 normal brain-to-plasma and intracranial tumor-to-plasma ratios for NT113, relative to erlotinib, indicating superior NT113 partitioning to intracranial tissue compartments. These data provide a strong rationale for the clinical investigation of NT113, a novel ERBB inhibitor, in treating patients with GBM.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/genética , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Amplificação de Genes , Glioblastoma/genética , Quinazolinas/farmacologia , Animais , Antineoplásicos/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Cloridrato de Erlotinib , Feminino , Expressão Gênica , Glioblastoma/tratamento farmacológico , Glioblastoma/mortalidade , Glioblastoma/patologia , Humanos , Lapatinib , Camundongos , Quinazolinas/administração & dosagem , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Nat Genet ; 45(12): 1428-30, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24121789

RESUMO

Here we report the discovery of truncating mutations of the gene encoding the cohesin subunit STAG2, which regulates sister chromatid cohesion and segregation, in 36% of papillary non-invasive urothelial carcinomas and 16% of invasive urothelial carcinomas of the bladder. Our studies suggest that STAG2 has a role in controlling chromosome number but not the proliferation of bladder cancer cells. These findings identify STAG2 as one of the most commonly mutated genes in bladder cancer.


Assuntos
Antígenos Nucleares/genética , Códon sem Sentido , Neoplasias da Bexiga Urinária/genética , Animais , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Feminino , Frequência do Gene , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Neoplasias da Bexiga Urinária/patologia , Urotélio/patologia
14.
Neuropsychiatr Dis Treat ; 9: 1553-64, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24143104

RESUMO

OBJECTIVE: The use of an algorithm may facilitate measurement-based treatment and result in more rational therapy. We conducted a 1-year, open-label study to compare various outcomes of algorithm-based treatment (ALGO) for schizophrenia versus treatment-as-usual (TAU), for which evidence has been very scarce. METHODS: In ALGO, patients with schizophrenia (Diagnostic and Statistical Manual of Mental Disorders, fourth edition) were treated with an algorithm consisting of a series of antipsychotic monotherapies that was guided by the total scores in the positive and negative syndrome scale (PANSS). When posttreatment PANSS total scores were above 70% of those at baseline in the first and second stages, or above 80% in the 3rd stage, patients proceeded to the next treatment stage with different antipsychotics. In contrast, TAU represented the best clinical judgment by treating psychiatrists. RESULTS: Forty-two patients (21 females, 39.0 ± 10.9 years-old) participated in this study. The baseline PANSS total score indicated the presence of severe psychopathology and was significantly higher in the ALGO group (n = 25; 106.9 ± 20.0) than in the TAU group (n = 17; 92.2 ± 18.3) (P = 0.021). As a result of treatment, there were no significant differences in the PANSS reduction rates, premature attrition rates, as well as in a variety of other clinical measures between the groups. Despite an effort to make each group unique in pharmacologic treatment, it was found that pharmacotherapy in the TAU group eventually became similar in quality to that of the ALGO group. CONCLUSION: While the results need to be carefully interpreted in light of a hard-to-distinguish treatment manner between the two groups and more studies are necessary, algorithm-based antipsychotic treatments for schizophrenia compared well to treatment-as-usual in this study.

15.
Clin Cancer Res ; 19(23): 6473-83, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24170543

RESUMO

PURPOSE: Cidofovir (CDV) is an U.S. Food and Drug Administration (FDA)-approved nucleoside antiviral agent used to treat severe human cytomegalovirus (HCMV) infection. Until now, no clear therapeutic effects of CDV have been reported outside of the setting of viral infection, including a potential role for CDV as an antineoplastic agent for the treatment of brain tumors. EXPERIMENTAL DESIGN: We investigated the cytotoxicity of CDV against the glioblastoma cells, U87MG and primary SF7796, both in vitro and in vivo, using an intracranial xenograft model. Standard techniques for cell culturing, immunohistochemistry, Western blotting, and real-time PCR were employed. The survival of athymic mice (n = 8-10 per group) bearing glioblastoma tumors, treated with CDV alone or in combination with radiation, was analyzed by the Kaplan-Meier method and evaluated with a two-sided log-rank test. RESULTS: CDV possesses potent antineoplastic activity against HCMV-infected glioblastoma cells. This activity is associated with the inhibition of HCMV gene expression and with activation of cellular apoptosis. Surprisingly, we also determined that CDV induces glioblastoma cell death in the absence of HCMV infection. CDV is incorporated into tumor cell DNA, which promotes double-stranded DNA breaks and induces apoptosis. In the setting of ionizing radiotherapy, the standard of care for glioblastoma in humans, CDV augments radiation-induced DNA damage and, further, promotes tumor cell death. Combination therapy with CDV and radiotherapy significantly extended the survival of mice bearing intracranial glioblastoma tumors. CONCLUSION: We have identified a novel antiglioma property of the FDA-approved drug CDV, which heightens the cytotoxic effect of radiotherapy, the standard of care therapy for glioblastoma.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Citosina/análogos & derivados , Glioblastoma/tratamento farmacológico , Organofosfonatos/farmacologia , Animais , Antineoplásicos/metabolismo , Apoptose , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cidofovir , Citosina/metabolismo , Citosina/farmacologia , Quebras de DNA de Cadeia Dupla , Replicação do DNA , Feminino , Glioblastoma/patologia , Humanos , Camundongos , Camundongos Nus , Organofosfonatos/metabolismo , Esferoides Celulares/efeitos dos fármacos , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Clin Cancer Res ; 19(13): 3681-92, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23685835

RESUMO

PURPOSE: The aim of this study was to identify conserved pharmacodynamic and potential predictive biomarkers of response to anti-VEGF therapy using gene expression profiling in preclinical tumor models and in patients. EXPERIMENTAL DESIGN: Surrogate markers of VEGF inhibition [VEGF-dependent genes or VEGF-dependent vasculature (VDV)] were identified by profiling gene expression changes induced in response to VEGF blockade in preclinical tumor models and in human biopsies from patients treated with anti-VEGF monoclonal antibodies. The potential value of VDV genes as candidate predictive biomarkers was tested by correlating high or low VDV gene expression levels in pretreatment clinical samples with the subsequent clinical efficacy of bevacizumab (anti-VEGF)-containing therapy. RESULTS: We show that VDV genes, including direct and more distal VEGF downstream endothelial targets, enable detection of VEGF signaling inhibition in mouse tumor models and human tumor biopsies. Retrospective analyses of clinical trial data indicate that patients with higher VDV expression in pretreatment tumor samples exhibited improved clinical outcome when treated with bevacizumab-containing therapies. CONCLUSIONS: In this work, we identified surrogate markers (VDV genes) for in vivo VEGF signaling in tumors and showed clinical data supporting a correlation between pretreatment VEGF bioactivity and the subsequent efficacy of anti-VEGF therapy. We propose that VDV genes are candidate biomarkers with the potential to aid the selection of novel indications as well as patients likely to respond to anti-VEGF therapy. The data presented here define a diagnostic biomarker hypothesis based on translational research that warrants further evaluation in additional retrospective and prospective trials.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/metabolismo , Inibidores da Angiogênese/farmacologia , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos/farmacologia , Bevacizumab , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Neoplasias/genética , Neoplasias/mortalidade , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Tumores Neuroendócrinos/tratamento farmacológico , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo
17.
Neuro Oncol ; 15(2): 189-97, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23262509

RESUMO

BACKGROUND: Liposomal drug packaging is well established as an effective means for increasing drug half-life, sustaining drug activity, and increasing drug efficacy, whether administered locally or distally to the site of disease. However, information regarding the relative effectiveness of peripheral (distal) versus local administration of liposomal therapeutics is limited. This issue is of importance with respect to the treatment of central nervous system cancer, for which the blood-brain barrier presents a significant challenge in achieving sufficient drug concentration in tumors to provide treatment benefit for patients. METHODS: We compared the anti-tumor activity and efficacy of a nanoliposomal formulation of irinotecan when delivered peripherally by vascular route with intratumoral administration by convection-enhanced delivery (CED) for treating intracranial glioblastoma xenografts in athymic mice. RESULTS: Our results show significantly greater anti-tumor activity and survival benefit from CED of nanoliposomal irinotecan. In 2 of 3 efficacy experiments, there were animal subjects that experienced apparent cure of tumor from local administration of therapy, as indicated by a lack of detectable intracranial tumor through bioluminescence imaging and histopathologic analysis. Results from investigating the effectiveness of combination therapy with nanoliposomal irinotecan plus radiation revealed that CED administration of irinotecan plus radiation conferred greater survival benefit than did irinotecan or radiation monotherapy and also when compared with radiation plus vascularly administered irinotecan. CONCLUSIONS: Our results indicate that liposomal formulation plus direct intratumoral administration of therapeutic are important for maximizing the anti-tumor effects of irinotecan and support clinical trial evaluation of this therapeutic plus route of administration combination.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Camptotecina/análogos & derivados , Sistemas de Liberação de Medicamentos , Glioblastoma/tratamento farmacológico , Lipossomos , Nanopartículas , Animais , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Camptotecina/administração & dosagem , Convecção , Vias de Administração de Medicamentos , Feminino , Glioblastoma/mortalidade , Glioblastoma/patologia , História Antiga , Humanos , Técnicas Imunoenzimáticas , Injeções Intraperitoneais , Irinotecano , Camundongos , Camundongos Nus , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Magn Reson Med ; 70(1): 33-9, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22851374

RESUMO

High resolution compressed sensing hyperpolarized (13)C magnetic resonance spectroscopic imaging was applied in orthotopic human glioblastoma xenografts for quantitative assessment of spatial variations in (13)C metabolic profiles and comparison with histopathology. A new compressed sensing sampling design with a factor of 3.72 acceleration was implemented to enable a factor of 4 increase in spatial resolution. Compressed sensing 3D (13)C magnetic resonance spectroscopic imaging data were acquired from a phantom and 10 tumor-bearing rats following injection of hyperpolarized [1-(13)C]-pyruvate using a 3T scanner. The (13)C metabolic profiles were compared with hematoxylin and eosin staining and carbonic anhydrase 9 staining. The high-resolution compressed sensing (13)C magnetic resonance spectroscopic imaging data enabled the differentiation of distinct (13)C metabolite patterns within abnormal tissues with high specificity in similar scan times compared to the fully sampled method. The results from pathology confirmed the different characteristics of (13)C metabolic profiles between viable, non-necrotic, nonhypoxic tumor, and necrotic, hypoxic tissue.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/metabolismo , Compressão de Dados/métodos , Glioblastoma/metabolismo , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Proteínas de Neoplasias/metabolismo , Animais , Isótopos de Carbono , Linhagem Celular Tumoral , Humanos , Imageamento Tridimensional/métodos , Masculino , Imagem Molecular/métodos , Ratos , Ratos Nus , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Distribuição Tecidual
19.
Neuro Oncol ; 14(8): 1050-61, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22670012

RESUMO

To optimize the development of stem cell (SC)-based therapies for the treatment of glioblastoma (GBM), we compared the pathotropism of 2 SC sources, human mesenchymal stem cells (hMSCs) and fetal neural stem cells (fNSCs), toward 2 orthotopic GBM models, circumscribed U87vIII and highly infiltrative GBM26. High resolution and contrast-enhanced (CE) magnetic resonance imaging (MRI) were performed at 14.1 Tesla to longitudinally monitor the in vivo location of hMSCs and fNSCs labeled with the same amount of micron-size particles of iron oxide (MPIO). To assess pathotropism, SCs were injected in the contralateral hemisphere of U87vIII tumor-bearing mice. Both MPIO-labeled SC types exhibited tropism to tumors, first localizing at the tumor edges, then in the tumor masses. MPIO-labeled hMSCs and fNSCs were also injected intratumorally in mice with U87vIII or GBM26 tumors to assess their biodistribution. Both SC types distributed throughout the tumor in both GBM models. Of interest, in the U87vIII model, areas of hyposignal colocalized first with the enhancing regions (ie, regions of high vascular permeability), consistent with SC tropism to vascular endothelial growth factor. In the GBM26 model, no rim of hyposignal was observed, consistent with the infiltrative nature of this tumor. Quantitative analysis of the index of dispersion confirmed that both MPIO-labeled SC types longitudinally distribute inside the tumor masses after intratumoral injection. Histological studies confirmed the MRI results. In summary, our results indicate that hMSCs and fNSCs exhibit similar properties regarding tumor tropism and intratumoral dissemination, highlighting the potential of these 2 SC sources as adequate candidates for SC-based therapies.


Assuntos
Compostos Férricos , Células-Tronco Fetais , Imageamento por Ressonância Magnética/métodos , Células-Tronco Mesenquimais , Neoplasias Experimentais , Células-Tronco Neurais , Animais , Neoplasias Encefálicas/patologia , Movimento Celular/fisiologia , Feminino , Imunofluorescência , Glioblastoma/patologia , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Nus , Microscopia Confocal , Neuroimagem , Transplante de Células-Tronco
20.
J Neurooncol ; 108(1): 29-35, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22231932

RESUMO

The prognosis for diffuse infiltrating pontine gliomas (DIPG) remains extremely poor, with the majority of patients surviving less than 2 years. Here, we have adapted standard xenograft techniques to study glioma growth in the mouse brainstem, and have utilized the mouse model for studying a relevant therapeutic for treating DIPGs. bioluminescence imaging monitoring revealed a progressive increase in signal following the injection of either of two tumor cell types into the brainstem. Mice with orthotopic GS2 tumors, and receiving a single 100 mg/kg dose of temozolomide showed a lengthy period of decreased tumor luminescence, with substantially increased survival relative to untreated mice (P < 0.001). A small molecule inhibitor that targets cdk4/6 was used to test AM-38 brainstem xenograft response to treatment. Drug treatment resulted in delayed tumor growth, and significantly extended survival. Our results demonstrate the feasibility of using an orthotopic brainstem tumor model in athymic mice, and for application to testing therapeutic agents in treating DIPG.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias do Tronco Encefálico/tratamento farmacológico , Ponte/patologia , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Neoplasias do Tronco Encefálico/patologia , Caspase 3/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina , Dacarbazina/análogos & derivados , Dacarbazina/uso terapêutico , Modelos Animais de Doenças , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Substâncias Luminescentes , Camundongos , Camundongos Nus , Proteínas de Neoplasias/metabolismo , Transplante de Neoplasias/métodos , Piperazinas/uso terapêutico , Piridinas/uso terapêutico , Proteína do Retinoblastoma/metabolismo , Temozolomida , Fatores de Tempo , Células Tumorais Cultivadas , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...