Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 118(11): 4278-4289, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34289076

RESUMO

Whole-cell biosensors hold potential in a variety of industrial, medical, and environmental applications. These biosensors can be constructed through the repurposing of bacterial sensing mechanisms, including the common two-component system (TCS). Here we report on the construction of a range of novel biosensors that are sensitive to acetoacetate, a molecule that plays a number of roles in human health and biology. These biosensors are based on the AtoSC TCS. An ordinary differential equation model to describe the action of the AtoSC TCS was developed and sensitivity analysis of this model used to help inform biosensor design. The final collection of biosensors constructed displayed a range of switching behaviours at physiologically relevant acetoacetate concentrations and can operate in several Escherichia coli host strains. It is envisaged that these biosensor strains will offer an alternative to currently available commercial strip tests and, in future, may be adopted for more complex in vivo or industrial monitoring applications.


Assuntos
Acetoacetatos/metabolismo , Técnicas Biossensoriais , Proteínas de Escherichia coli , Escherichia coli , Regulação Bacteriana da Expressão Gênica , Acetoacetatos/análise , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Óperon
2.
ACS Synth Biol ; 8(12): 2620-2628, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31657907

RESUMO

Caenorhabditis elegans has become a key model organism within biology. In particular, the transparent gut, rapid growing time, and ability to create a defined gut microbiota make it an ideal candidate organism for understanding and engineering the host microbiota. Here we present the development of an experimental model that can be used to characterize whole-cell bacterial biosensors in vivo. A dual-plasmid sensor system responding to isopropyl ß-d-1-thiogalactopyranoside was developed and fully characterized in vitro. Subsequently, we show that the sensor was capable of detecting and reporting on changes in the intestinal environment of C. elegans after introducing an exogenous inducer into the environment. The protocols presented here may be used to aid the rational design of engineered bacterial circuits, primarily for diagnostic applications. In addition, the model system may serve to reduce the use of current animal models and aid in the exploration of complex questions within general nematode and host-microbe biology.


Assuntos
Bactérias/genética , Técnicas Biossensoriais , Caenorhabditis elegans/microbiologia , Engenharia Genética , Intestinos/microbiologia , Animais , Contagem de Colônia Microbiana , Proteínas de Fluorescência Verde/metabolismo , Processamento de Imagem Assistida por Computador , Isopropiltiogalactosídeo/metabolismo , Plasmídeos/genética
3.
iScience ; 14: 323-334, 2019 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-30954530

RESUMO

Plasmids are the workhorse of both industrial biotechnology and synthetic biology, but ensuring they remain in bacterial cells is a challenge. Antibiotic selection cannot be used to stabilize plasmids in most real-world applications, and inserting dynamical gene networks into the genome remains challenging. Plasmids have evolved several mechanisms for stability, one of which, post-segregational killing (PSK), ensures that plasmid-free cells do not survive. Here we demonstrate the plasmid-stabilizing capabilities of the axe/txe toxin-antitoxin system and the microcin-V bacteriocin system in the probiotic bacteria Escherichia coli Nissle 1917 and show that they can outperform the commonly used hok/sok. Using plasmid stability assays, automated flow cytometry analysis, mathematical models, and Bayesian statistics we quantified plasmid stability in vitro. Furthermore, we used an in vivo mouse cancer model to demonstrate plasmid stability in a real-world therapeutic setting. These new PSK systems, plus the developed Bayesian methodology, will have wide applicability in clinical and industrial biotechnology.

4.
Front Physiol ; 9: 1332, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30405424

RESUMO

Laminopathies are a clinically heterogeneous group of disorders caused by mutations in LMNA. The main proteins encoded by LMNA are Lamin A and C, which together with Lamin B1 and B2, form the nuclear lamina: a mesh-like structure located underneath the inner nuclear membrane. Laminopathies show striking tissue specificity, with subtypes affecting striated muscle, peripheral nerve, and adipose tissue, while others cause multisystem disease with accelerated aging. Although several pathogenic mechanisms have been proposed, the exact pathophysiology of laminopathies remains unclear, compounded by the rarity of these disorders and lack of easily accessible cell types to study. To overcome this limitation, we used induced pluripotent stem cells (iPSCs) from patients with skeletal muscle laminopathies such as LMNA-related congenital muscular dystrophy and limb-girdle muscular dystrophy 1B, to model disease phenotypes in vitro. iPSCs can be derived from readily accessible cell types, have unlimited proliferation potential and can be differentiated into cell types that would otherwise be difficult and invasive to obtain. iPSC lines from three skeletal muscle laminopathy patients were differentiated into inducible myogenic cells and myotubes. Disease-associated phenotypes were observed in these cells, including abnormal nuclear shape and mislocalization of nuclear lamina proteins. Nuclear abnormalities were less pronounced in monolayer cultures of terminally differentiated skeletal myotubes than in proliferating myogenic cells. Notably, skeletal myogenic differentiation of LMNA-mutant iPSCs in artificial muscle constructs improved detection of myonuclear abnormalities compared to conventional monolayer cultures across multiple pathogenic genotypes, providing a high-fidelity modeling platform for skeletal muscle laminopathies. Our results lay the foundation for future iPSC-based therapy development and screening platforms for skeletal muscle laminopathies.

5.
Cell Syst ; 7(1): 5-16, 2018 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-30048620

RESUMO

Recent advances in synthetic biology and biological system engineering have allowed the design and construction of engineered live biotherapeutics targeting a range of human clinical applications. In this review, we outline how systems approaches have been used to move from simple constitutive systems, where a single therapeutic molecule is expressed, to systems that incorporate sensing of the in vivo environment, feedback, computation, and biocontainment. We outline examples where each of these capabilities are achieved in different human disorders, including cancer, inflammation, and metabolic disease, in a number of environments, including the gastrointestinal tract, the liver, and the oral cavity. Throughout, we highlight the challenges of developing microbial therapeutics that are both sensitive and specific. Finally, we discuss how these systems are leading to the realization of engineered live biotherapeutics in the clinic.


Assuntos
Bioengenharia/tendências , Terapia Biológica/tendências , Biologia Sintética/tendências , Animais , Bioengenharia/métodos , Terapia Biológica/métodos , Sistemas de Liberação de Medicamentos , Engenharia Genética/métodos , Engenharia Genética/tendências , Humanos , Probióticos/uso terapêutico , Biologia Sintética/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...