Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; : 1-22, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37565332

RESUMO

In this study, the structural and anticancer properties of aminopterin, as well as its antiviral characteristics, were elucidated. The preferred conformations of the title molecule were investigated with semiempirical AM1 method, and the obtained the lowest energy conformer was then optimized by using density functional (DFT/B3LYP) method with 6-311++G(d,p) as basis set. The vibrational frequencies of the optimized structure were calculated by the same level of theory and were compared with the experimental values. The vibrational assignments were performed based on the computed potential energy distribution (PED) of the vibrational modes. The molecular electrostatic potential (MEP) and frontier molecular orbitals (HOMO, LUMO) analyses were carried out for the optimized structure and the chemical reactivity has been scrutinized. To enlighten the biological activity of aminopterin as anticancer and anti-COVID-19 agents, aminopterin was docked into DNA, αIIBß3 and α5ß1integrins, human dihydrofolate reductase, main protease (Mpro) of SARS-CoV-2 and SARS-CoV-2/ACE2 complex receptor. The binding mechanisms of aminopterin with the receptors were clarified. The molecular docking results revealed the strong interaction of the aminopterin with DNA (-8.2 kcal/mol), αIIBß3 and α5ß1 integrins (-9.0 and -10.8 kcal/mol, respectively), human dihydrofolate reductase (-9.7 kcal/mol), Mpro of SARS-CoV-2 (-6.7 kcal/mol), and SARS-CoV-2/ACE2 complex receptor (-8.1 kcal/mol). Moreover, after molecular docking calculations, top-scoring ligand-receptor complexes of the aminopterin with SARS-CoV-2 enzymes (6M03 and 6M0J) were subjected to 50 ns all-atom MD simulations to investigate the ligand-receptor interactions in more detail, and to determine the binding free energies accurately. The predicted results indicate that the aminopterin may significantly inhibit SARS-CoV-2 infection. Thus, in this study, as both anticancer and anti-COVID-19 agents, the versatility of the biological activity of aminopterin was shown.Communicated by Ramaswamy H. Sarma.

2.
J Biomol Struct Dyn ; 41(10): 4321-4343, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35477348

RESUMO

The cationic pentapeptide Glu-Gln-Arg-Pro-Arg (EQRPR) belongs to the family of anti-cancer peptides with significant anti-cancer activity. However, the mechanism by which the peptide performs this activity is unknown. In this study, we explored the pharmaceutical profile of Glu-Gln-Arg-Pro-Arg pentapeptide and revealed its anticancer properties by in silico docking studies. Moreover, the effect of EQRPR behavior of the DPPC membrane was investigated by means of Langmuir monolayer technique and the results were discussed in terms of mutual interactions. To evaluate the binding mechanisms, the pentapeptide and its various D-amino acid substituted analogs were docked to both epidermal growth factor receptor (EGFR) tyrosine kinase and proto-oncogene tyrosine-protein kinase, Fyn. Simultaneous binding of the pentapeptides to both EGFR and Fyn proteins, which are receptor- and non-receptor-kinases, respectively, suggest that these peptides can be an effective agent for cancer treatment. Moreover, to show the potential of the investigated pentapeptides to overcome the generated mutation-related drug resistance to EGFR targeted therapies, molecular docking investigations of EQRPR and all its D-analogs were performed against the prospective targets: Wild type EGFRWT and mutant EGFRT790M. Erlotinib and TAK-285 were used as reference molecules. The strong interaction of the peptide with EGFRWT (from -9.24 to -9.75 kcal/mol) and the secondary mutant EGFRT790M (from -9.28 to -9.64 kcal/mol) observed in most cancer recurrence cases indicates its good potential to overcome drug resistance in cancer therapy. In addition, the pharmacological properties of the investigated pentapeptides were revealed by in silico ADME (Absorption, Distribution, Metabolism, Excretion) and toxicity analysis.Communicated by Ramaswamy H. Sarma.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Oryza , Humanos , Receptores ErbB/metabolismo , Simulação de Acoplamento Molecular , Oryza/metabolismo , Inibidores de Proteínas Quinases/química , Mutação , Neoplasias Pulmonares/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Tirosina , Resistencia a Medicamentos Antineoplásicos
3.
J Biomol Struct Dyn ; 41(19): 9666-9685, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36369834

RESUMO

Vinorelbine, a vinca alkaloid, is an antimitotic drug that inhibits polymerisation process of tubulins to microtubules, and is widely used in cancer chemotherapy. Due to the importance of the structure-activity relationship, in this work the conformational preferences of the vinorelbine molecule were surched by PM3 method. The obtained lowest energy conformer was then optimized at DFT/B3LYP/6-31G(d,p) level of theory and the structural characteristics were determined. Frontier orbital (HOMO, LUMO) and molecular electrostatic potential (MEP) analyses were performed for the optimized structure. The experimental FT-IR, Raman and UV-VIS spectral data of vinorelbine along with the theoretical DFT/B3LYP/6-31G(d,p) calculations were investigated in detail. The vibrational wavenumbers were assigned based on the calculated potential energy distribution (PED) of the vibrational modes. To shed light into the anticancer property of vinorelbine as microtubule destabilizer, the most favourable binding mode and the interaction details between vinorelbine and tubulin were revealed by molecular docking studies of vinorelbine into the α,ß-tubulin (PDB IDs: 4O2B; 1SA0; 7CNN) and binding free energies were calculated by the combination of Molecular Mechanics/Generalized Born Surface Area (MMGBSA) and Molecular Mechanics/Poisson-Boltzmann Surface Area (MM-PBSA) methods {MM/PB(GB)SA}. The calculated vinorelbine-7CNN binding free energy, using by MM/PB(GB)SA approach, was found to be the best (-50.39 kcal/mol), and followed by vinorelbine-4O2B (-28.5 kcal/mol) and vinorelbine-1SA0 (-17.59 kcal/mol) systems. Moreover, the interaction of vinorelbine with the cytochrome P450 enzymes (CYP), which are known to help in the metabolism of many drugs in the body, was investigated by docking studies against CYP2D6 and CYP3A4 targets.Communicated by Ramaswamy H. Sarma.


Assuntos
Vinca , Simulação de Acoplamento Molecular , Vinorelbina , Espectroscopia de Infravermelho com Transformada de Fourier , Conformação Molecular , Vibração , Análise Espectral Raman , Teoria Quântica , Espectrofotometria Ultravioleta , Termodinâmica
4.
Food Chem Toxicol ; 164: 113068, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35483487

RESUMO

The present study was aimed at investigating the toxicity of various pesticides on rat liver. It also aimed to show whether this toxicity could be avoided using lupeol. Adult male Wistars albino rats were randomly divided into nine groups. Control groups were given saline, corn oil, and lupeol; pesticide groups were given malathion, chlorpyrifos, and tebuconazole; in the other three treatments, same doses of pesticides and lupeol were given to the rats for ten days. Histopathological examination showed severe degenerative changes in the pesticide groups. Serum AChE activities, liver GSH, total antioxidant capacity levels, AChE, CAT, SOD, GPx, GR, Na+/K+-ATPase, ARE, and PON were decreased, while serum TNF-α, liver LPO, HP, NO, AOPP, total oxidant status, ROS, and oxidative stress index levels as well as AST, ALT, ALP, GST, arginase and xanthine oxidase activities were increased in the pesticides administered groups. It was observed that the PCNA levels determined by the immunohistochemical method increased in the pesticide groups. Also, the results Raman spectroscopy suggest that the technique may be used to understand/have an insight into pesticide toxicity mechanisms. The administration of lupeol demonstrated a hepatoprotective effect against pesticide-induced toxicity.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Praguicidas , Animais , Antioxidantes/farmacologia , Biomarcadores/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Fígado , Masculino , Estresse Oxidativo , Triterpenos Pentacíclicos , Praguicidas/metabolismo , Ratos , Ratos Wistar
5.
J Biomol Struct Dyn ; 40(2): 660-672, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-32909514

RESUMO

The theoretically possible most stable conformation of the cyclic dipeptide, which has a significant anticancer activity, was examined by conformational analysis method and then by DFT calculations. With DFT calculations, cyclo(Ala-His) dipeptide was found to be more stable in boat form than in planar conformation. Moreover, conformations of the dimeric forms of the title molecule were investigated. The dimeric forms of the cyclo(Ala-His) dipeptide were created by combining two identical cyclo(Ala-His) monomers, in lowest energy configuration and as a result three energetically possible dimeric structures were obtained. The solid phase FTIR and Raman spectra of cyclo(Ala-His) have been recorded. The spectra were interpreted with the aid of quantum chemical calculations based on density functional theory, using B3LYP and wb97xd methods with 6-311++G(d,p) basis set, in order to elucidate structural and spectral properties of the investigated molecule. Experimental vibrational spectra are found to be in accord with the simulated vibrational spectra. The assignment of the vibrational modes was performed depending on the calculated potential energy distribution (PED). In slico molecular docking of cyclo(Ala-His) was also carried out with DNA. The drug likeness and ADMET properties were analyzed for the prediction of pharmacokinetic profiles. The results revealed that the compound has the potential to be the leading molecule in the drug discovery process.


Assuntos
Dipeptídeos , Análise Espectral Raman , Simulação de Acoplamento Molecular , Teoria Quântica , Espectroscopia de Infravermelho com Transformada de Fourier , Vibração
6.
J Biomol Struct Dyn ; 40(22): 12148-12164, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34463215

RESUMO

The main objective of the present study is to investigate the molecular structure and DNA binding interaction of the tyrosyl-lysyl-threonine (YKT) tripeptide, which has anticancer, antioxidant and analgesic properties, using various in silico (MD, QM, molecular docking), spectroscopic (UV, FT-IR, FTIR-ATR, Raman, gel electrophoresis) and in vitro (MCF-7 and HeLa cancer cell lines and BEAS-2B cell line) methods. The optimized geometry, vibrational wavenumbers, molecular electrostatic potential (MEP), natural bond orbital (NBO) and HOMO-LUMO (highest occupied molecular orbital- lowest unoccupied molecular orbital) calculations were carried out with Density Functional Theory (DFT) using B3LYP/6-311++G(d,p) basis set to indicate conformational, vibrational and intramolecular charge transfer characteristics. The assignment of all fundamental theoretical vibration wavenumbers was performed using potential energy distribution analysis (PED). DNA is a significant pharmacological target of drugs in several diseases such as cancer. For this reason, molecular docking calculation was used to elucidate the binding and interaction between YKT tripeptide and DNA at the atomic level. Also, the dynamic behaviors of YKT and DNA was examined using MD simulations. Besides, the interaction of YKT with DNA was experimentally examined by UV titration method and agarose gel electrophoresis method. Experimental results showed that YKT was intercalatively and electrostatically bound to CT-DNA (Calf thymus DNA) and cleavage pBR322 DNA in the presence of H2O2. The pharmacokinetic profile of YKT was also obtained. Cytotoxic effect of YKT was evaluated on MCF-7, HeLa and BEAS-2B cell lines. Hence, these studies about YKT tripeptide may pave the way for the development of various cancer drugs. Communicated by Ramaswamy H. Sarma.


Assuntos
Peróxido de Hidrogênio , Análise Espectral Raman , Simulação de Acoplamento Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , DNA , Vibração , Eletricidade Estática , Teoria Quântica , Espectrofotometria Ultravioleta
7.
J Mol Graph Model ; 108: 107999, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34352727

RESUMO

Bioactive peptides derived from food proteins are becoming increasingly popular due to the growing awareness of their health-promoting properties. The structure and mechanism of anti-cancer action of pentapeptide Glu-Gln-Arg-Pro-Arg (EQRPR) derived from a rice bran protein are not known. Theoretical and experimental methods were employed to fill this gap. The conformation analysis of the EQRPR pentapeptide was performed first and the obtained lowest energy conformer was optimized. The experimental structural data obtained by FTIR and CD spectroscopies agree well with the theoretical results. d-isomer introduced one-by-one to each position and all D-isomers of the peptide were also examined for its possible anti-proteolytic and activity enhancement properties. The molecular docking revealed avid binding of the pentapeptide to the integrins α5ß1 and αIIbß3, with Kd values of 90 nM and 180 nM, respectively. Moreover, the EQRPR and its D-isomers showed strong binding affinities to apo- and holo-forms of Mpro, spike glycoprotein, ACE2, and dACE2. The predicted results indicate that the pentapeptide may significantly inhibit SARS-CoV-2 infection. Thus, the peptide has the potential to be the leading molecule in the drug discovery process as having multifunctional with diverse biological activities.


Assuntos
COVID-19 , Oryza , Humanos , Simulação de Acoplamento Molecular , Oligopeptídeos , SARS-CoV-2
8.
J Biomol Struct Dyn ; 39(12): 4212-4224, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32462981

RESUMO

A new nickel(II) complex was synthesized by using S-propyl-thiosemicarbazide and 2-amino-3,5-dibromobenzaldehyde. The complex, obtained by the template effect of nickel ions, was structurally analysed by experimental and theoretical vibrational spectroscopy, NMR and density functional theory (DFT) calculations. By using DFT/B3LYP method with 6-311++G(d, p) basis set, the most stable molecular structure of the title molecule was calculated. The fundamental vibrational wavenumbers, IR and Raman intensities for the optimized structure of the molecule under investigation were determined and compared with the experimental vibrational spectra. The vibrational assignment was achieved using the calculated potential energy distributions of the vibrational modes. Moreover, the molecular electrostatic potential (MEP), the highest occupied molecular orbital (HOMO) and the lowest occupied molecular orbital (LUMO) energies were calculated, Molecular docking of the molecule was carried out against DNA in order to identify the potential inhibitory action of the title compound. The findings suggested that the aforementioned compound has a strong binding affinity to interact with DNA residues DT8, DC9, DG12, DG16, DA17, and DA18 through the intermolecular hydrogen bonds. Also the performed in silico ADMET analysis was the prediction of the synthesized molecule's pharmacokinetic and toxicity profile expressing good oral drug like actions and non-toxic nature. The complex has been shown to have the possibility to become a model molecule for drug development processes.Communicated by Ramaswamy H. Sarma.


Assuntos
Níquel , Tiossemicarbazonas , Espectroscopia de Ressonância Magnética , Conformação Molecular , Simulação de Acoplamento Molecular , Teoria Quântica , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Vibração
9.
J Biomol Struct Dyn ; 39(7): 2376-2386, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32216608

RESUMO

Density functional theory calculations were performed with DFT method using both b3lyp/6-311++G(d,p) and wb97xd/6-311++G(d,p) levels of theory to predict the molecular geometry, to evaluate the molecular electrostatic potential and frontier molecular orbitals of synthesized a new compound: caprolactam-glysine cluster (CL-Gly). Molecular docking study of the CL-Gly was carried out to clarify the interaction and the probable binding modes, between the title compound and DNA. The antibacterial activities of CL-Gly cluster against Gram-positive and Gram-negative bacteria was determined. In silico ADMET study was also performed for predicting pharmacokinetic and toxicity profile of the synthesized cluster which expressed good drug-like behavior and non-toxic nature. It was revealed that the compound has importance in drug discovery process.Communicated by Ramaswamy H. Sarma.


Assuntos
Anti-Infecciosos , Caprolactama , Antibacterianos/farmacologia , Glicina , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Simulação de Acoplamento Molecular
10.
J Biomol Struct Dyn ; 38(3): 756-770, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-30890106

RESUMO

A new anthraquinone [1-(2-Aminoethyl)piperazinyl-9,10-dioxo-anthraquinone] derivative was synthesized and characterized by density functional theory (DFT) calculations, experimental and theoretical vibrational spectroscopy and NMR techniques. The most stable molecular structure of the title molecule was determined by DFT B3LYP method with 6-31++G(d,p) and 6-311++G(d,p) basis sets. The fundamental vibrational wavenumbers, IR and Raman intensities for the optimized structure of the investigated molecule were calculated and compared with the experimental vibrational spectra. The vibrational assignment of the molecule was done using the potential energy distribution analysis. The molecular electrostatic potential (MEP), highest occupied molecular orbital (HOMO) and lowest occupied molecular orbital (LUMO) were also calculated. The antibacterial activities of the new anthraquinone derivative against Gram-positive and Gram-negative bacteria were determined, and it was shown that the highest effectiveness was against Staphylococcus aureus and S. epidermidis while no activity was against Gram-negative bacteria. Moreover, the antimycotic activity of the title compound was examined and the cytotoxicity of anthraquinone derivate was determined. In order to find the possible inhibitory activity of the title compound, molecular docking of the molecule was carried out against DNA. The results indicated that the mentioned compound has a good binding affinity to interact with the DC3, DG4, DA5, DC21 and DC23 residues of DNA via the intermolecular hydrogen bonds. [Formula: see text] Communicated by Ramaswamy H. Sarma.


Assuntos
Antraquinonas/síntese química , Antraquinonas/farmacologia , Antibacterianos/farmacologia , DNA/metabolismo , Espectroscopia de Ressonância Magnética , Simulação de Acoplamento Molecular , Células A549 , Antraquinonas/química , Antibacterianos/química , Bactérias/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Fungos/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Conformação Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Eletricidade Estática , Vibração
11.
J Biomol Struct Dyn ; 38(5): 1354-1364, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30955453

RESUMO

A new ionic liquid was synthesized by the reaction of caprolactam with salicylic acid (CL-SA) and characterized by analysis of spectroscopic and DSC data. The optimized geometry and the electrostatic potential map of CL-SA were calculated with DFT method using the wb97xd/6-31++G(d,p) level of theory. Molecular docking study of the CL-SA was carried out to clarify the probable binding modes between the title compound and DNA and COX-2 and TOPII enzymes. In silico ADMET study was also performed for predicting pharmacokinetic and toxicity profile of the synthesized ionic liquid which expressed good oral drug-like behavior and non-toxic nature. It was revealed that the compound has a potential to become a lead molecule in drug discovery process.Communicated by Ramaswamy H. Sarma.


Assuntos
Antineoplásicos/química , Inibidores de Ciclo-Oxigenase 2/química , Líquidos Iônicos , Inibidores da Topoisomerase II/química , DNA , Simulação de Acoplamento Molecular , Estrutura Molecular
12.
Curr Comput Aided Drug Des ; 16(2): 104-121, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31244443

RESUMO

BACKGROUND: Sulpiride, which has selective dopaminergic blocking activity, is a substituted benzamide antipsychotic drug playing a prominent role in the treatment of schizophrenia, which more selective and primarily blocks dopamine D2 and D3 receptor. OBJECTIVE: This study has two main objectives, firstly; the molecular modeling studies (MD and Docking, ADME) were conducted to define the molecular profile of sulpiride and sulpiridereceptor interactions, another to synthesize polymeric nanoparticles with chitosan, having the advantage of slow/controlled drug release, to improve drug solubility and stability, to enhance utility and reduce toxicity. METHODS: Molecular dynamic simulation was carried out to determine the conformational change and stability (in water) of the drug and the binding profile of D3 dopamine receptor was determined by molecular docking calculations. The pharmacological properties of the drug were revealed by ADME analysis. The ionic gelation method was used to prepare sulpiride loaded chitosan nanoparticles (CS NPs). The Dynamic Light Scattering (DLS), UV-vis absorption (UV), Scanning Electron Microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy techniques were carried out to characterize the nanoparticles. In vitro cell cytotoxicity experiments examined with MTT assay on mouse fibroblast (L929), human neuroblastoma (SH-SY5Y) and glioblastoma cells (U-87). The statistical evaluations were produced by ANOVA. RESULTS: The residues (ASP-119, PHE-417) of D3 receptor provided a stable docking with the drug, and the important pharmacological values (blood brain barrier, Caco-2 permeability and human oral absorption) were also determined. The average particle size, PdI and zeta potential value of sulpiride- loaded chitosan NPs having a spherical morphology were calculated as 96.93 nm, 0.202 and +7.91 mV. The NPs with 92.8% encapsulation and 28% loading efficiency were found as a slow release profile with 38.49% at the end of the 10th day. Due to the formation of encapsulation, the prominent shifted wave numbers for C-O, S-O, S-N stretching, S-N-H bending of Sulpiride were also identified. Mitochondrial activity of U87, SHSY-5Y and L929 cell line were assayed and evaluated using the SPSS program. CONCLUSION: To provide more efficient use of Sulpiride having a low bioavailability of the gastrointestinal tract, the nanoparticle formulation with high solubility and bioavailability was designed and synthesized for the first time in this study for the treatment of schizophrenia. In addition to all pharmacological properties of drug, the dopamine blocking activity was also revealed. The toxic effect on different cell lines have also been interpreted.


Assuntos
Simulação de Acoplamento Molecular , Nanopartículas/química , Sulpirida/química , Sulpirida/síntese química , Animais , Disponibilidade Biológica , Células CACO-2 , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Quitosana , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Humanos , Camundongos , Tamanho da Partícula , Esquizofrenia , Solubilidade , Sulpirida/administração & dosagem
13.
J Fluoresc ; 28(5): 1127-1142, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30097974

RESUMO

Papain is a protease enzyme with therapeutic properties that are very valuable for medical applications. Poly(ε-caprolactone) (PCL) is an ideal polymeric carrier for controlled drug delivery systems due to its low biodegradability and its high biocompatibility. In this study, the three-dimensional structure and action mechanism of papain were investigated by in vitro and in silico experiments using molecular dynamics (MD) and molecular docking methods to elucidate biological functions. The results showed that the size of papain-loaded PCL nanoparticles (NPs) and the polydispersity index (PDI) of the NPs were 242.9 nm and 0.074, respectively. The encapsulation efficiency and loading efficiency were 80.4 and 27.2%, respectively. Human embryonic kidney cells (HEK-293) were used for determining the cytotoxicity of papain-loaded PCL and PCL nanoparticles. The in vitro cell culture showed that nanoparticles are not toxic at low concentrations, while toxicity slightly increases at high concentrations. In silico studies, which were carried out with MD simulations and ADME analysis showed that the strong hydrogen bonds between the ligand and the papain provide stability and indicate the regions in which the interactions occur.


Assuntos
Simulação por Computador , Portadores de Fármacos/química , Nanopartículas , Papaína/química , Poliésteres/química , Transporte Biológico , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/metabolismo , Portadores de Fármacos/toxicidade , Liberação Controlada de Fármacos , Células HEK293 , Humanos , Teste de Materiais , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Papaína/metabolismo , Poliésteres/metabolismo , Poliésteres/toxicidade , Conformação Proteica
14.
J Biomol Struct Dyn ; 36(11): 2893-2907, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28835169

RESUMO

Phe-Tyr dipeptide which was investigated in Wakame food with greatest ACE-inhibitory activity is used as a pharmaceutical drug for the treatment of hypertension, cardiovascular diseases, and diabetic nephropathy. To improve the bioavailability of Phe-Tyr, a delivery system based on poly (lactic-co-glycolic acid) (PLGA) nanoparticles loaded with Phe-Tyr (Phe-Tyr-PLGA NPs) for treating hypertension and cardiovascular diseases was prepared in this study. In the experiments, poly(lactic-co-glycolic acid) (PLGA) and Phe-Tyr dipeptide-loaded PLGA nanoparticles were prepared using the double emulsion (w/o/w) method. The characterizations of the nanoparticles were performed with a UV-vis spectrometer, the Zeta-sizer system, and FTIR spectrometer. The optimum size of the Phe-Tyr dipeptide-loaded PLGA nanoparticle was obtained with a 213.8 nm average particle size, and a 0.061 polydispersity index, -19.5 mV zeta potential, 34% of loaded and 90.09% of encapsulation efficiency. From TEM analysis, it was clearly seen that the dipeptide loaded nanoparticles had the spherical and non-aggregated morphology and Phe-Tyr dipeptide loaded-PLGA nanoparticles were obtained successfully. Cell toxicity of nanoparticles at different concentrations was assayed with XTT methods on L929 fibroblast cells. This study determined that the nanoparticles have low toxicity at lower concentration and toxicity augmented with increasing concentration of dipeptide. To analyze the effect of solvents on structure of Phe-Tyr, Molecular dynamics simulation was performed with GROMACS program and molecular orbital calculations were carried out to obtain structural and electronic properties of dipeptide. Moreover, molecular docking calculations were also employed to model and predict protein-drug interactions.


Assuntos
Anti-Hipertensivos/química , Anti-Hipertensivos/farmacologia , Dipeptídeos/química , Dipeptídeos/farmacologia , Desenho de Fármacos , Modelos Moleculares , Nanopartículas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Anti-Hipertensivos/administração & dosagem , Sobrevivência Celular/efeitos dos fármacos , Dipeptídeos/administração & dosagem , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Tamanho da Partícula , Análise Espectral
15.
J Biomol Struct Dyn ; 36(9): 2407-2423, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28714807

RESUMO

The theoretically possible stable conformer of the cyclic heptapeptide, that has significant anti-metastatic activity, was examined by conformational analysis followed by DFT calculations. Experimental infrared and Raman spectroscopy, together with theoretical DFT (6-31G (d,p) basis set)-based quantum chemical calculations, have been used to understand the structural and spectral characteristics of cyclo(Gly-Arg-Gly-Asp-Ser-Pro-Ala) {cyclo(GRGDSPA)}. A complete analysis of the vibrational spectrum has been reported on the basis of potential energy distribution (PED%) data of the vibrational modes. Finally, the calculation results were applied to simulate infrared and Raman spectra of the title compound. The simulated spectra satisfactorily coincide with the experimental spectra. In addition, molecular electrostatic potential and frontier molecular orbital analysis were investigated using theoretical calculations. The stability of the molecule, arising from hyperconjugative interaction and charge delocalization, has been analyzed using natural bond orbital analysis and a high E(2) value reveals the presence of strong interaction between donors and acceptors. Molecular docking studies with fibronectin were performed on cyclo(GRGDSPA) in order to understand its inhibitory nature. The results indicate that the docked ligand {cyclo(GRGDSPA)} forms a stable complex with human fibronectin and gives a binding affinity value of -7.7 kcal/mol, which points out that cyclo(GRGDSPA) might exhibit inhibitory activity against the attachment of melanoma cells to human fibronectin.


Assuntos
Modelos Moleculares , Fragmentos de Peptídeos/química , Peptídeos Cíclicos/química , Conformação Proteica , Análise Espectral , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral/métodos , Análise Espectral Raman
16.
J Biomol Struct Dyn ; 35(3): 585-602, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26919050

RESUMO

In this study, conformational behavior, structural, and vibrational characterization of the carboxy terminal dipeptide of ß-endorphin (glycy-l-glutamine, glycyl-glutamine, beta-endorphin30-31), which is an inhibitory neuropeptide synthesized from beta-endorphin1-31 in brain stem regions, has been investigated. The theoretically possible stable conformers were searched by means of molecular mechanics method to determine their energetically preferred conformations. The 360 different conformations were calculated with the φ, Ψ, χ dihedral angles using the Ramachandran maps. The most stable conformation of the title molecule is characterized by the extended backbone shape (e) in the BR conformational range with -.78 kcal/mol energy. The cis- and trans-dimeric forms of the dipeptide were also formed and energetically preferred conformations of dimers were investigated. The experimental methods (FT-IR, micro-Raman spectroscopies) coupled with quantum chemical calculations based on density functional theory (DFT) have been used to identify the geometrical, energetic, and vibrational characteristics of the dipeptide. The assignment of the vibrational spectra was performed based on the potential energy distribution of the vibrational modes. To investigate the electronic properties, such as nonlinear optical properties, the electric dipole moment, the mean polarizability, the mean first hyperpolarizability, and HOMO-LUMO energy gaps were computed using the DFT with the B3LYP/6-31++G(d,p) basis set combination. The second-order interaction energies were derived from natural bonding orbital analysis. The focus of this study is to determine possible stable conformation on inhibitory neuropeptide and to investigate molecular geometry, molecular vibrations of monomeric and dimeric forms, and hydrogen bonding interactions of glycy-l-glutamine dipeptide.


Assuntos
Modelos Moleculares , Neuropeptídeos/química , Conformação Proteica , beta-Endorfina/química , Ligação de Hidrogênio , Multimerização Proteica , Análise Espectral
17.
J Biomol Struct Dyn ; 33(4): 911-23, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-24712318

RESUMO

Primidone (Mysoline), with the chemical formula 5-ethyl-5-phenyl-hexahydropyrimidine- 4,6-dione (C12H14N2O2), has been a valuable drug in the treatment of epilepsy. In the present work, the experimental IR and Raman spectra of solid phase primidone were recorded, and the results were compared with theoretical wavenumber values of monomer and dimer forms of the title molecule. Vibrational spectral simulations in the dimer form were carried out to improve the assignment of the bands in the solid phase experimental spectra. The possible stable conformers of free molecule were searched by means of torsion potential energy surfaces scan studies through two dihedral angles. The molecular geometries of the monomer and dimer forms of title molecule were optimized using DFT method at B3LYP/6-31++G(d,p) level of theory. Using PEDs determined the contributions of internal (stretching, bending, etc.) coordinates to each normal mode of vibration. Further, HOMO-LUMO energy gap and NBO properties of the investigated molecule in monomer and dimer forms were also calculated.


Assuntos
Anticonvulsivantes/química , Primidona/química , Ligação de Hidrogênio , Modelos Químicos , Modelos Moleculares , Conformação Molecular , Teoria Quântica , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Termodinâmica
18.
J Biomol Struct Dyn ; 33(2): 322-43, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-24428444

RESUMO

The study on the conformational and vibrational behaviors of sulpiride molecule which is known as a neuroleptic or antipsychotic drug that is widely used clinically in the treatment of schizophrenic or depressive disorders is an important scientific and practical task. In here, a careful enough study of monomer and dimeric forms of sulpiridine {5-(aminosulfonyl)-N-[(1-ethyl-2-pyrrolidinyl) ethyl]-2-methoxy-benzamide (C(15)H(23)N(3)O(4)S)} is undertaken by density functional theory (DFTB3LYP) method with the B3LYP/6-31 G(d,p) basis set. The conformations of free molecule were searched by means of torsion potential energy surfaces scan studies through dihedral angles D1 (8 N, 18 C, 20 C, 23 N), D2 (18 C, 20 C, 23 N, 25 C) and D3 (28 C, 30 C, 41 S, 44 N) in electronically ground state, employing 6-31 G basic set. The final geometrical parameters for the obtained stable conformers were determined by means of geometry optimization, carried out at DFT/B3LYP/6-31 G(d,p) theory level. Afterwards, the possible dimer forms of the molecule were formed and their energetically preferred conformations were investigated. Moreover, the effect of basis set superposition error on the structure and energy of the three energetically favourable sulpiride dimers has been determined. The optimized structural parameters of the most stable monomer and three low energy dimer forms were used in the vibrational wavenumber calculations. Raman and IR (4000-400 cm(-1)) spectra of sulpiride have been recorded in the solid state. The assignment of the bands was performed based on the potential energy distribution data. The natural bond orbital analysis has been performed on both monomer and dimer geometries in order to elucidate delocalization of electron density within the molecule. The predicted frontier molecular orbital energies at DFT/B3LYP/6-31 G(d,p) theory level show that charge transfer occurs within the molecule. The first-order hyperpolarizability (ß0) and related properties (µ and α) of the title molecule were also calculated.


Assuntos
Antipsicóticos/química , Sulpirida/química , Ligação de Hidrogênio , Modelos Moleculares , Conformação Molecular , Teoria Quântica , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...