Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 117(37): 10920-8, 2013 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-23962228

RESUMO

We report molecular aggregate formation of TTBC (1,1',3,3'-tetraethyl-5,5',6,6'-tetrachlorobenzimidazolocarbocyanine) in submicrometer-sized PVA (poly(vinyl alcohol)) fibers by electrospinning. The formation of the molecular aggregate is examined by solution and instrumental parameters of electrospinning. The precursor solution of PVA/TTBC, in the range of 0.016-0.065 wt % is subjected to electrospinning under an electrical field ranging from 0.95 to 1.81 kV cm(-1). Both randomly deposited and uniaxially aligned fibers are achieved by using two parallel-positioned metal strips as counter electrode. Photoluminescence and polarized Fourier transform infrared spectroscopies are employed to determine spectral properties of the fibers. H-aggregates are formed within the electrospun fibers, regardless of their alignment, and H- and J-type aggregates coexist in the alternative spin-coated and the cast films. A strongly polarized photoluminescence emission is observed in the direction of uniaxially aligned fibers as a result of the orientation of the H-aggregates along the fiber axis. We demonstrate that electrospinning is a process capable of forming and orienting TTBC aggregates during the structural development of the polymer/dye nanofibers. These fibrous films may potentially find applications in optics and electronics.

2.
J Phys Chem B ; 113(34): 11568-73, 2009 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-19845394

RESUMO

Submicrometer diameter, light emitting fibers of poly(vinyl alcohol) (PVA) doped with pseudoisocyanine (1,1'-diethyl-2,2'-cyanine bromide, PIC) dye were prepared by electrospinning. A horizontal setup was employed with a stationary collector consisting of two parallel-positioned metal strips separated by a void gap. Formation of uniaxially aligned and randomly deposited fibers in electrospun films was confirmed by microscopy. Photoluminescence (PL) spectroscopy is used to evaluate spectral properties of both types of fibers doped with PIC. While PIC molecules were individually dispersed in PVA solution, they assemble into J-aggregates upon electrospinning when the weight fraction of PIC molecules is above 2.5 wt %. The formation of J-aggregates was observed in both randomly deposited and uniaxially aligned electrospun fibers. Moreover, the fibers aligned uniaxially showed a high degree of polarized emission (PLparallel/PLperpendicular=10), arising from the orientation of J-aggregates along the fiber axis. On the other hand, isotropic emission of J-aggregates was observed from the fibers deposited randomly. As a conclusion, electrospinning was found to be an efficient and a practical method to form highly oriented J-aggregates dispersed into polymer fibers. To the best of our knowledge, it is the first time formation of J-aggregates (a bottom-up approach) and electrospinning (a top-down approach) is successfully combined.


Assuntos
Membranas Artificiais , Álcool de Polivinil/química , Quinolinas/síntese química , Eletroquímica , Tamanho da Partícula , Quinolinas/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...