Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 15(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38136296

RESUMO

Clear cell sarcoma (CCS) is a rare, aggressive malignancy that most frequently arises in the soft tissues of the extremities. It is defined and driven by expression of one member of a family of related translocation-generated fusion oncogenes, the most common of which is EWSR1::ATF1. The EWSR1::ATF1 fusion oncoprotein reprograms transcription. However, the binding distribution of EWSR1::ATF1 across the genome and its target genes remain unclear. Here, we interrogated the genomic distribution of V5-tagged EWSR1::ATF1 in tumors it had induced upon expression in mice that also recapitulated the transcriptome of human CCS. ChIP-sequencing of V5-EWSR1::ATF1 identified previously unreported motifs including the AP1 motif and motif comprised of TGA repeats that resemble GGAA-repeating microsatellites bound by EWSR1::FLI1 in Ewing sarcoma. ChIP-sequencing of H3K27ac identified super enhancers in the mouse model and human contexts of CCS, which showed a shared super enhancer structure that associates with activated genes.

2.
J Clin Invest ; 131(15)2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34156976

RESUMO

Clear cell sarcoma (CCS) is a deadly malignancy affecting adolescents and young adults. It is characterized by reciprocal translocations resulting in expression of the chimeric EWSR1-ATF1 or EWSR1-CREB1 fusion proteins, driving sarcomagenesis. Besides these characteristics, CCS has remained genomically uncharacterized. Copy number analysis of human CCSs showed frequent amplifications of the MITF locus and chromosomes 7 and 8. Few alterations were shared with Ewing sarcoma or desmoplastic, small round cell tumors, which are other EWSR1-rearranged tumors. Exome sequencing in mouse tumors generated by expression of EWSR1-ATF1 from the Rosa26 locus demonstrated no other repeated pathogenic variants. Additionally, we generated a new CCS mouse by Cre-loxP-induced chromosomal translocation between Ewsr1 and Atf1, resulting in copy number loss of chromosome 6 and chromosome 15 instability, including amplification of a portion syntenic to human chromosome 8, surrounding Myc. Additional experiments in the Rosa26 conditional model demonstrated that Mitf or Myc can contribute to sarcomagenesis. Copy number observations in human tumors and genetic experiments in mice rendered, for the first time to our knowledge, a functional landscape of the CCS genome. These data advance efforts to understand the biology of CCS using innovative models that will eventually allow us to validate preclinical therapies necessary to achieve longer and better survival for young patients with this disease.


Assuntos
Cromossomos Humanos Par 7/genética , Cromossomos Humanos Par 8/genética , Amplificação de Genes , Fator de Transcrição Associado à Microftalmia/genética , Proteínas de Fusão Oncogênica/genética , Sarcoma de Células Claras/genética , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Sarcoma de Células Claras/metabolismo
3.
Cancer Discov ; 11(10): 2620-2637, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34078620

RESUMO

Reduced protein levels of SMARCB1 (also known as BAF47, INI1, SNF5) have long been observed in synovial sarcoma. Here, we show that combined Smarcb1 genetic loss with SS18-SSX expression in mice synergized to produce aggressive tumors with histomorphology, transcriptomes, and genome-wide BAF-family complex distributions distinct from SS18-SSX alone, indicating a defining role for SMARCB1 in synovial sarcoma. Smarcb1 silencing alone in mesenchyme modeled epithelioid sarcomagenesis. In mouse and human synovial sarcoma cells, SMARCB1 was identified within PBAF and canonical BAF (CBAF) complexes, coincorporated with SS18-SSX in the latter. Recombinant expression of CBAF components in human cells reconstituted CBAF subcomplexes that contained equal levels of SMARCB1 regardless of SS18 or SS18-SSX inclusion. In vivo, SS18-SSX expression led to whole-complex CBAF degradation, rendering increases in the relative prevalence of other BAF-family subtypes, PBAF and GBAF complexes, over time. Thus, SS18-SSX alters BAF subtypes levels/balance and genome distribution, driving synovial sarcomagenesis. SIGNIFICANCE: The protein level of BAF component SMARCB1 is reduced in synovial sarcoma but plays a defining role, incorporating into PBAF and SS18-SSX-containing canonical BAF complexes. Reduced levels of SMARCB1 derive from whole-complex degradation of canonical BAF driven by SS18-SSX, with relative increases in the abundance of other BAF-family subtypes.See related commentary by Maxwell and Hargreaves, p. 2375.This article is highlighted in the In This Issue feature, p. 2355.


Assuntos
Proteínas de Fusão Oncogênica/genética , Proteína SMARCB1/genética , Sarcoma Sinovial/genética , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Sarcoma Sinovial/patologia
4.
J Pathol ; 254(4): 474-493, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33428234

RESUMO

Sarcoma comprises a group of malignancies that includes over 100 individual disease entities. Type-specific genetic events initiate each tumor, occurring within a specific cellular context or circumstance. All sarcomas share a relationship with mesenchymal tissues of origin. Conceptual models for each specific route towards sarcomagenesis have developed over the years as clinical, cellular, and increasingly molecular observations have advanced hypotheses to be tested in the forward or reverse direction in experimental systems, often genetically engineered model organisms. This review considers the history of these discoveries in the context of technologies available at the time each was made and provides a comprehensive summary of the current knowledge of sarcoma genetics, including characteristic translocations, oncogene activation and loss of tumor suppressor gene events, and their putative cells of origin. Also considered are the interrelatedness of molecular clinical observations and genetic experiments in model systems to move this field of knowledge forward, as well as their implications for diagnostic and therapeutic paradigms for sarcoma. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Carcinogênese/genética , Sarcoma/genética , Sarcoma/patologia , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...