Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 279: 121495, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35700610

RESUMO

Herein, we examined the modulatory effects ofApocynum (APO) on Monosodium Glutamate (MSG)-induced oxidative damage on the brain tissue of rats after long-term consumption of blood serum components by biochemical assays, Fourier transform infrared spectroscopy(FTIR), and machine learning methods. Sprague-Dawley male rats were randomly divided into the Control, Control + APO, MSG, and MSG + APO groups (n = 8 per group). All administrations were made by oral gavage saline, MSG, or APO and they were repeated for 28 days of the experiments. Brain tissue and blood serum samples were collected and analyzed for measurement levels ofmalondialdehyde (MDA),glutathione (GSH),myeloperoxidase (MPO), superoxide dismutase (SOD) activity, and Spectroscopic analysis. After 29 days, the results were evaluated using machine learning (ML). The levels of MDA and MPO showed changes in the MSG and MSG + APO groups, respectively. Changes in the proteins and lipids were observed in the FTIR spectra of the MSG groups. Additionally, APO in these animals improved the FTIR spectra to be similar to those in the Control group. The accuracy of the FTIR results calculated by ML was 100%. The findings of this study demonstrate that Apocynin treatment protectsagainst MSG-induced oxidative damage by inhibitingreactive oxygen speciesand upregulatingantioxidant capacity, indicating its potential in alleviatingthe toxic effects of MSG.


Assuntos
Estresse Oxidativo , Glutamato de Sódio , Acetofenonas , Animais , Encéfalo/metabolismo , Glutationa/metabolismo , Aprendizado de Máquina , Masculino , Ratos , Ratos Sprague-Dawley , Glutamato de Sódio/metabolismo , Glutamato de Sódio/farmacologia
2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-137802

RESUMO

The causative agent of the current pandemic and coronavirus disease 2019 (COVID-19) is the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)1. Understanding how SARS-CoV-2 enters and spreads within human organs is crucial for developing strategies to prevent viral dissemination. For many viruses, tissue tropism is determined by the availability of virus receptors on the surface of host cells2. Both SARS-CoV and SARS-CoV-2 use angiotensin-converting enzyme 2 (ACE2) as a host receptor, yet, their tropisms differ3-5. Here, we found that the cellular receptor neuropilin-1 (NRP1), known to bind furin-cleaved substrates, significantly potentiates SARS-CoV-2 infectivity, which was inhibited by a monoclonal blocking antibody against the extracellular b1b2 domain of NRP1. NRP1 is abundantly expressed in the respiratory and olfactory epithelium, with highest expression in endothelial cells and in the epithelial cells facing the nasal cavity. Neuropathological analysis of human COVID-19 autopsies revealed SARS-CoV-2 infected NRP1-positive cells in the olfactory epithelium and bulb. In the olfactory bulb infection was detected particularly within NRP1-positive endothelial cells of small capillaries and medium-sized vessels. Studies in mice demonstrated, after intranasal application, NRP1-mediated transport of virus-sized particles into the central nervous system. Thus, NRP1 could explain the enhanced tropism and spreading of SARS-CoV-2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...