Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 8(1): e53669, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23341970

RESUMO

Previously we reported that Wnt5a is highly expressed in the murine urogenital ridge-derived UG26-1B6 cells but not embryonic liver-derived EL08-1D2 cells. Mouse long-term repopulating hematopoietic stem cells (LTR-HSC) were maintained in non-contact UG26-1B6 cultures but not EL08-1D2 non-contact cultures, unless Wnt5a was also added to the cultures, suggesting a role for Wnt5a in the in vitro maintenance of LTR-HSC. Here, we investigated if the effect of Wnt5a on adult LTR-HSC activity is HSC-autonomous. To test the effect of Wnt5a on maintenance of LTR-HSC, we performed limiting dilution competitive transplantation assays of murine Lin-Sca1(+) c-kit(+) (LSK) cells cultured for 5 days with TPO and SCF with and without Wnt5a. The effect of Wnt5a on the generation of colony forming units (CFU) and the homing ability of LSK progeny was also tested. No effects were found of Wnt5a on total cell expansion, the number of CFU, or homing ability of day 5 LSK progeny. Furthermore, addition of Wnt5a did not improve, but may have impeded maintenance of LTR-HSC. In conclusion, our data indicate that Wnt5a does not enhance the maintenance and expansion of adult murine LTR-HSCs or committed progenitors cultured in vitro in serum- and stroma-free conditions.


Assuntos
Meios de Cultura Livres de Soro , Proteínas Wnt/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Hematopoese/efeitos dos fármacos , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Proteínas Proto-Oncogênicas c-kit/metabolismo , Solubilidade , Proteínas Wnt/química , Proteína Wnt-5a
2.
Blood ; 117(19): 5088-91, 2011 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-21415271

RESUMO

CD41 expression is associated with the earliest stages of mouse hematopoiesis. It is notably expressed on some cells of the intra-aortic hematopoietic clusters, an area where the first adult-repopulating hematopoietic stem cells (HSCs) are generated. Although it is generally accepted that CD41 expression marks the onset of primitive/definitive hematopoiesis, there are few published data concerning its expression on HSCs. It is as yet uncertain whether HSCs express CD41 throughout development, and if so, to what level. We performed a complete in vivo transplantation analysis with yolk sac, aorta, placenta, and fetal liver cells, sorted based on CD41 expression level. Our data show that the earliest emerging HSCs in the aorta express CD41 in a time-dependent manner. In contrast, placenta and liver HSCs are CD41⁻. Thus, differential and temporal expression of CD41 by HSCs in the distinct hematopoietic territories suggests a developmental/dynamic regulation of this marker throughout development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Glicoproteína IIb da Membrana de Plaquetas/biossíntese , Animais , Aorta/embriologia , Aorta/metabolismo , Separação Celular , Feminino , Citometria de Fluxo , Células-Tronco Hematopoéticas/citologia , Imuno-Histoquímica , Fígado/embriologia , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Placenta/embriologia , Placenta/metabolismo , Gravidez , Saco Vitelino/embriologia , Saco Vitelino/metabolismo
3.
Stem Cells Dev ; 19(4): 481-90, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19788395

RESUMO

Stem cells are widely studied to enable their use in tissue repair. However, differences in function and differentiation potential exist between distinct stem cell populations. Whether those differences are due to donor variation, cell culture, or intrinsic properties remains elusive. Therefore, we compared 3 cell lines isolated from 3 different niches using the Affymetrix Exon Array platform: the cord blood-derived neonatal unrestricted somatic stem cell (USSC), adult bone marrow-derived mesenchymal stem cells (BM-MSC), and adult adipose tissue-derived stem cells (AdAS). While donor variation was minimal, large differences between stem cells of different origin were detected. BM-MSC and AdAS, outwardly similar, are more closely related to each other than to USSC. Interestingly, USSC expressed genes involved in the cell cycle and in neurogenesis, consistent with their reported neuronal differentiation capacity. The BM-MSC signature indicates that they are primed toward developmental processes of tissues and organs derived from the mesoderm and endoderm. Remarkably, AdAS appear to be highly enriched in immune-related genes. Together, the data suggest that the different mesenchymal stem cell types have distinct gene expression profiles, reflecting their origin and differentiation potential. Furthermore, these differences indicate a demand for effective differentiation protocols tailored to each stem cell type.


Assuntos
Tecido Adiposo , Células-Tronco Adultas , Células da Medula Óssea , Sangue Fetal , Perfilação da Expressão Gênica , Células-Tronco Mesenquimais , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Adulto , Células-Tronco Adultas/citologia , Células-Tronco Adultas/metabolismo , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Diferenciação Celular , Endoderma/citologia , Sangue Fetal/citologia , Sangue Fetal/metabolismo , Expressão Gênica , Genes cdc , Humanos , Imunomodulação/genética , Recém-Nascido , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Mesoderma/citologia , Neurogênese/genética , Neurônios/citologia , Especificidade de Órgãos
4.
Stem Cells Dev ; 19(6): 877-85, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19795981

RESUMO

Unrestricted somatic stem cells (USSCs) have been recently identified in human umbilical cord blood and have been shown to differentiate into lineages representing all 3 germ layers. To characterize microRNAs that may regulate osteogenic differentiation of USSCs, we carried out expression analysis for 157 microRNAs using quantitative RT-PCR before and after osteogenic induction (t = 0.5, 24, 72, 168, 216 h). Three microRNAs, hsa-miR-135b, hsa-miR-224, and hsa-miR-31, were consistently down-regulated during osteogenesis of USSC line 1. Hsa-miR-135b was shown to be the most profoundly down-regulated in osteogenesis of USSC line 1 and further confirmed to be down-regulated in the osteogenic differentiation of 2 additional USSC lines. Function of hsa-miR-135b in osteogenesis of USSCs was examined by retroviral overexpression, which resulted in an evident decreased mineralization, indicating that hsa-miR-135b down-regulation is functionally important for full osteogenic differentiation of USSCs. MicroRNAs have been shown to regulate negatively expression of their target gene(s). To identify putative targets of hsa-miR-135b, we performed cDNA microarray expression analysis. We selected in total 10 transcripts that were down-regulated (>or=2-fold) in response to hsa-miR-135b overexpression at day 7 and day 9 of osteogenic differentiation. The function of most of these targets in human osteogenesis is unknown and requires further investigation. Markedly, quantitative RT-PCR data showed decreased expression of osteogenic markers IBSP and Osterix, both known to be involved in bone mineralization, in osteogenesis of USSCs that overexpress hsa-miR-135b. This finding suggests that hsa-miR-135b may control osteoblastic differentiation of USSCs by regulating expression of bone-related genes.


Assuntos
Calcificação Fisiológica/genética , Diferenciação Celular/genética , MicroRNAs/metabolismo , Osteogênese/genética , Células-Tronco/citologia , Células-Tronco/metabolismo , Biomarcadores/metabolismo , Linhagem Celular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , MicroRNAs/genética
5.
Haematologica ; 90(6): 734-9, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15951285

RESUMO

BACKGROUND AND OBJECTIVES: The first hematopoietic stem cells (HSC) in the mouse able to give rise to the adult hematopoietic system emerge at embryonic day (E) 10.5 in the intraembryonic aorta-gonads-mesonephros (AGM) region, as demonstrated by transplantation into irradiated adult recipients. It has been shown by transplantation into conditioned neonatal or hematopoietic mutant adult recipients that less potent multipotential hematopoietic progenitors exist in the mouse embryo at E9, one day earlier than the appearance of HSC. Studies of the lineage relationships of multipotential hematopoietic progenitors and HSC in the mouse embryo have been complicated by inaccessibility due to in utero development. Attempts are being made to create an in vitro whole mouse embryo culture system to access the developing mouse embryo for such studies of hematopoietic cell emergence during early and mid-gestational stages. The aim of this study was to compare the development of multipotential hematopoietic progenitors in early in utero and in vitro-developed mouse embryos. DESIGN AND METHODS: To test hematopoietic progentior/stem cell activity in the mouse embryonic tissues obtained from genetically marked in utero and in vitro-developed embryos, transplantations were performed using unconditioned neonatal W41/W41 (c-kit hematopoietic mutant) recipients. Long-term donor-cell reconstitution in transplanted mice was measured by (i) semiquantitative polymerase chain reaction and (ii) flow cytometry on peripheral blood and hematopoietic organs. RESULTS: Our experimental data show that multipotent hematopoietic progenitors from in utero-developed embryos engraft unconditioned W41/W41 neonates. Furthermore, in vitro-developed whole embryos also contain early multipotent hematopoietic progenitor cells that are able to yield high-level, long-term engraftment of W41/W41 neonates. INTERPRETATION AND CONCLUSIONS: The in vitro culture of whole mouse embryos during mid-gestational stages allows for the normal growth of multipotential hematopoietic progenitors that can be assayed by transplantation into W41/W41 neonatal recipients. Thus, in vitro-developed whole embryos can be used with confidence in future studies to examine the lineage relationships of multipotential hematopoietic progenitors and HSC.


Assuntos
Transplante de Células-Tronco Hematopoéticas/métodos , Animais , Animais Recém-Nascidos , Diferenciação Celular , Linhagem da Célula , Embrião de Mamíferos/citologia , Feminino , Citometria de Fluxo , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL
6.
J Exp Med ; 200(7): 871-82, 2004 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-15466621

RESUMO

GATA-2 is an essential transcription factor in the hematopoietic system that is expressed in hematopoietic stem cells (HSCs) and progenitors. Complete deficiency of GATA-2 in the mouse leads to severe anemia and embryonic lethality. The role of GATA-2 and dosage effects of this transcription factor in HSC development within the embryo and adult are largely unexplored. Here we examined the effects of GATA-2 gene dosage on the generation and expansion of HSCs in several hematopoietic sites throughout mouse development. We show that a haploid dose of GATA-2 severely reduces production and expansion of HSCs specifically in the aorta-gonad-mesonephros region (which autonomously generates the first HSCs), whereas quantitative reduction of HSCs is minimal or unchanged in yolk sac, fetal liver, and adult bone marrow. However, HSCs in all these ontogenically distinct anatomical sites are qualitatively defective in serial or competitive transplantation assays. Also, cytotoxic drug-induced regeneration studies show a clear GATA-2 dose-related proliferation defect in adult bone marrow. Thus, GATA-2 plays at least two functionally distinct roles during ontogeny of HSCs: the production and expansion of HSCs in the aorta-gonad-mesonephros and the proliferation of HSCs in the adult bone marrow.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Dosagem de Genes , Células-Tronco Hematopoéticas/fisiologia , Fatores de Transcrição/fisiologia , Animais , Aorta/fisiologia , Medula Óssea/fisiologia , Radioisótopos de Césio , Proteínas de Ligação a DNA/genética , Feminino , Citometria de Fluxo , Fator de Transcrição GATA2 , Gônadas/fisiologia , Imuno-Histoquímica , Mesonefro/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Reação em Cadeia da Polimerase/métodos , Baço/anatomia & histologia , Fatores de Tempo , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...