RESUMO
OBJECTIVE: This study aimed to investigate the presence of indoleamine-2,3-dioxygenase and bacterial translocation after the administration of 3-aminobenzamide and infliximab in the TNBS model of rat colitis. METHODS: The study group was divided into five categories as follows: group 1: (control), group 2: colitis+saline, group 3: colitis+3-aminobenzamide, group 4: colitis+infliximab, and group 5: colitis+3-aminobenzamide+infliximab. Intestinal mesenteric cultures were incubated on specific agar media plates under aerobic and anaerobic conditions, bacterial translocation was evaluated and assessed as colony-forming units per gram of tissue. Colonic tissue samples were evaluated by Western blotting method to detect the presence of indoleamine-2,3-dioxygenase. RESULTS: The results obtained were as follows: group 1: normal gut flora; group 2: eight of nine samples had bacterial translocation, of which six of them had positive indoleamine-2,3-dioxygenase protein; group 3: five of nine samples had bacterial translocation, of which seven of them had positive indoleamine-2,3-dioxygenase; group 4: three of nine samples had bacterial translocation, of which seven of them had positive indoleamine-2,3-dioxygenase; and group 5: only one sample had exact indoleamine-2,3-dioxygenase protein. CONCLUSION: Altered expression of indoleamine-2,3-dioxygenase results in a lower bacterial translocation via infliximab compared with 3-aminobenzamide treatment. Combined treatments emphasized different approaches for the new molecules related to indoleamine-2,3-dioxygenase.
Assuntos
Colite , Indolamina-Pirrol 2,3,-Dioxigenase , Animais , Anti-Inflamatórios/uso terapêutico , Benzamidas , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Infliximab/farmacologia , Infliximab/uso terapêutico , RatosRESUMO
SUMMARY OBJECTIVE: This study aimed to investigate the presence of indoleamine-2,3-dioxygenase and bacterial translocation after the administration of 3-aminobenzamide and infliximab in the TNBS model of rat colitis. METHODS: The study group was divided into five categories as follows: group 1: (control), group 2: colitis+saline, group 3: colitis+3-aminobenzamide, group 4: colitis+infliximab, and group 5: colitis+3-aminobenzamide+infliximab. Intestinal mesenteric cultures were incubated on specific agar media plates under aerobic and anaerobic conditions, bacterial translocation was evaluated and assessed as colony-forming units per gram of tissue. Colonic tissue samples were evaluated by Western blotting method to detect the presence of indoleamine-2,3-dioxygenase. RESULTS: The results obtained were as follows: group 1: normal gut flora; group 2: eight of nine samples had bacterial translocation, of which six of them had positive indoleamine-2,3-dioxygenase protein; group 3: five of nine samples had bacterial translocation, of which seven of them had positive indoleamine-2,3-dioxygenase; group 4: three of nine samples had bacterial translocation, of which seven of them had positive indoleamine-2,3-dioxygenase; and group 5: only one sample had exact indoleamine-2,3-dioxygenase protein. CONCLUSION: Altered expression of indoleamine-2,3-dioxygenase results in a lower bacterial translocation via infliximab compared with 3-aminobenzamide treatment. Combined treatments emphasized different approaches for the new molecules related to indoleamine-2,3-dioxygenase.
RESUMO
In this study, twenty-two new [1,2,4]triazolo[3,4-b][1,3,4]thiadiazoles (5a-n, 6a-h) were synthesized under microwave irradiation (MWI). The chemical structures of the compounds were elucidated by their IR, 1H-NMR, LC-MS, and elemental analysis. The compounds were tested for antinociceptive activity by using the tail clip, tail flick, hot plate, and writhing methods in mice. The varying levels of antinociceptive activity of the compounds were compared with those of aspirin. Among these compounds, compound 5g and 5j were found to be significantly more active than the other compounds and the standard in the tests. Also, inhibitory effects of the test compounds on COX-1 and COX-2 activities were investigated. DuP-697 for COX-2 and SC-560 for COX-1 were used as reference standards.