Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharm Biomed Anal ; 235: 115623, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37542827

RESUMO

Nanomaterials and nanotechnology offer promising opportunities in point-of-care (POC) diagnostics and therapeutics due to their unique physical and chemical properties. POC platforms aim to provide rapid and portable diagnostic and therapeutic capabilities at the site of patient care, offering cost-effective solutions. Incorporating nanomaterials with distinct optical, electrical, and magnetic properties can revolutionize the POC industry, significantly enhancing the effectiveness and efficiency of diagnostic and theragnostic devices. By leveraging nanoparticles and nanofibers in POC devices, nanomaterials have the potential to improve the accuracy and speed of diagnostic tests, making them more practical for POC settings. Technological advancements, such as smartphone integration, imagery instruments, and attachments, complement and expand the application scope of POCs, reducing invasiveness by enabling analysis of various matrices like saliva and breath. These integrated testing platforms facilitate procedures without compromising diagnosis quality. This review provides a summary of recent trends in POC technologies utilizing nanomaterials and nanotechnologies for analyzing disease biomarkers. It highlights advances in device development, nanomaterial design, and their applications in POC. Additionally, complementary tools used in POC and nanomaterials are discussed, followed by critical analysis of challenges and future directions for these technologies.


Assuntos
Nanoestruturas , Sistemas Automatizados de Assistência Junto ao Leito , Humanos , Testes Imediatos , Nanoestruturas/química , Nanotecnologia/métodos , Saliva
2.
Biosensors (Basel) ; 13(3)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36979600

RESUMO

Microfluidics is very crucial in lab-on-a-chip systems for carrying out operations in a large-scale laboratory environment on a single chip. Microfluidic systems are miniaturized devices in which the fluid behavior and control can be manipulated on a small platform, with surface forces on the platform being greater than volumetric forces depending on the test method used. In recent years, paper-based microfluidic analytical devices (µPADs) have been developed to be used in point-of-care (POC) technologies. µPADs have numerous advantages, including ease of use, low cost, capillary action liquid transfer without the need for power, the ability to store reagents in active form in the fiber network, and the capability to perform multiple tests using various measurement techniques. These benefits are critical in the advancement of paper-based microfluidics in the fields of disease diagnosis, drug application, and environment and food safety. Cancer is one of the most critical diseases for early detection all around the world. Detecting cancer-specific biomarkers provides significant data for both early diagnosis and controlling the disease progression. µPADs for cancer biomarker detection hold great promise for improving cure rates, quality of life, and minimizing treatment costs. Although various types of bioanalytical platforms are available for the detection of cancer biomarkers, there are limited studies and critical reviews on paper-based microfluidic platforms in the literature. Hence, this article aims to draw attention to these gaps in the literature as well as the features that future platforms should have.


Assuntos
Técnicas Analíticas Microfluídicas , Neoplasias , Humanos , Microfluídica , Sistemas Automatizados de Assistência Junto ao Leito , Detecção Precoce de Câncer , Qualidade de Vida , Papel , Biomarcadores Tumorais , Neoplasias/diagnóstico , Dispositivos Lab-On-A-Chip
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...