Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Inf Model ; 63(20): 6177-6182, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37782001

RESUMO

The industry's transition from three-dimensional (3D) glasses to virtual reality (VR) headsets has left modelers stranded without hardware supply, since walking around and waving arms in a virtual world is a great experience but also very tiring when doing time-intensive modeling work. We present a novel software implementation that uses a VR headset while sitting at a desk in front of the normal screen, which is beamed into the virtual reality together with keyboard, mouse, and chair using the headset's cameras and an extra tracker attached to the seat-back. Compared to 3D glasses, this yields a comparably relaxing but much more immersive workplace and provides additional possibilities such as taking molecules into one's hands, standing up, and walking or teleporting through the models. This VR functionality has been combined with a molecular graphics engine based on Vulkan, a next-generation cross-platform application programming interface (API) for GPUs and the successor of the widely used Open Graphics Library (OpenGL). It is built into the YASARA Model program, which includes many features like small and large molecule builders, electron densities, partial surfaces, contact analysis, coordinate manipulation, and animations. Interactive tutorials are provided to guide modelers into VR and familiarize them with the molecular modeling features. YASARA Model is available for Linux, Windows, Android, and MacOS (the latter without VR) with an introductory video at www.YASARA.org/vr.


Assuntos
Interface Usuário-Computador , Realidade Virtual , Humanos , Software , Computadores , Modelos Moleculares
2.
J Chem Inf Model ; 61(10): 5293-5303, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34528431

RESUMO

Building and displaying all-atom models of biomolecular structures with millions or billions of atoms, like virus particles or cells, remain a challenge due to the sheer size of the data, the required levels of automated building, and the visualization limits of today's graphics hardware. Based on concepts introduced with the CellPack program, we report new algorithms to create such large-scale models using an intermediate coarse-grained "pet representation" of biomolecules with 1/10th the normal size. Pet atoms are placed such that they optimally trace the surface of the original molecule with just ∼1/50th the original atom number and are joined with covalent bonds. Molecular dynamics simulations of pet molecules allow for efficient packing optimization, as well as the generation of realistic DNA/RNA conformations. This pet world can be expanded back to the all-atom representation to be explored and visualized with full details. Essential for the efficient interactive visualization of gigastructures is the use of multiple levels of detail (LODs), where distant molecules are drawn with a heavily reduced polygon count. We present a grid-based algorithm to create such LODs for all common molecular graphics styles (including ball-and-sticks, ribbons, and cartoons) that do not require monochrome molecules to hide LOD transitions. As a practical application, we built all-atom models of SARS-CoV-2, HIV, and an entire presynaptic bouton with 1 µm diameter and 3.6 billion atoms, using modular building blocks to significantly reduce GPU memory requirements through instancing. We employ the Vulkan graphics API to maximize performance on consumer grade hardware and describe how to use the mmCIF format to efficiently store such giant models. An implementation is available as part of the YASARA molecular modeling and simulation program from www.YASARA.org. The free YASARA View program can be used to explore the presented models, which can be downloaded from www.YASARA.org/petworld, a Creative Commons platform for sharing giant biomolecular structures.


Assuntos
COVID-19 , Gráficos por Computador , Algoritmos , Humanos , Simulação de Dinâmica Molecular , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...