Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Nanotechnol ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641642

RESUMO

Plasmonic tunnel junctions are a unique electroluminescent system in which light emission occurs via an interplay between tunnelling electrons and plasmonic fields instead of electron-hole recombination as in conventional light-emitting diodes. It was previously shown that placing luminescent molecules in the tunneling pathway of nanoscopic tunnel junctions results in peculiar upconversion electroluminescence where the energy of emitted photons exceeds that of excitation electrons. Here we report the observation of upconversion electroluminescence in macroscopic van der Waals plasmonic tunnel junctions comprising gold and few-layer graphene electrodes separated by a ~2-nm-thick hexagonal boron nitride tunnel barrier and a monolayer semiconductor. We find that the semiconductor ground exciton emission is triggered at excitation electron energies lower than the semiconductor optical gap. Interestingly, this upconversion is reached in devices operating at a low conductance (<10-6 S) and low power density regime (<102 W cm-2), defying explanation through existing proposed mechanisms. By examining the scaling relationship between plasmonic and excitonic emission intensities, we elucidate the role of inelastic electron tunnelling dipoles that induce optically forbidden transitions in the few-layer graphene electrode and ultrafast hot carrier transfer across the van der Waals interface.

2.
Adv Mater ; : e2402628, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38670114

RESUMO

A new nanoporous amorphous carbon (NAC) structure that achieves both ultrahigh strength and high electrical conductivity, which are usually incompatible in porous materials is reported. By using modified spark plasma sintering, three amorphous carbon phases with different atomic bonding configurations are created. The composite consisted of an amorphous sp2-carbon matrix mixed with amorphous sp3-carbon and amorphous graphitic motif. NAC structure has an isotropic electrical conductivity of up to 12 000 S m-1, Young's modulus of up to ≈5 GPa, and Vickers hardness of over 900 MPa. These properties are superior to those of existing conductive nanoporous materials. Direct investigation of the multiscale structure of this material through transmission electron microscopy, electron energy loss spectroscopy, and machine learning-based electron tomography revealed that the origin of the remarkable material properties is the well-organized sp2/sp3 amorphous carbon phases with a core-shell-like architecture, where the sp3-rich carbon forms a resilient core surrounded by a conductive sp2-rich layer. This research not only introduces novel materials with exceptional properties but also opens new opportunities for exploring amorphous structures and designing high-performance materials.

3.
Nat Mater ; 23(4): 479-485, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38216725

RESUMO

In anisotropic crystals, the direction-dependent effective mass of carriers can have a profound impact on spin transport dynamics. The puckered crystal structure of black phosphorus leads to direction-dependent charge transport and optical response, suggesting that it is an ideal system for studying anisotropic spin transport. To this end, we fabricate and characterize high-mobility encapsulated ultrathin black-phosphorus-based spin valves in a four-terminal geometry. Our measurements show that in-plane spin lifetimes are strongly gate tunable and exceed one nanosecond. Through high out-of-plane magnetic fields, we observe a fivefold enhancement in the out-of-plane spin signal case compared to in-plane and estimate a colossal spin-lifetime anisotropy of ∼6. This finding is further confirmed by oblique Hanle measurements. Additionally, we estimate an in-plane spin-lifetime anisotropy ratio of up to 1.8. Our observation of strongly anisotropic spin transport along three orthogonal axes in this pristine material could be exploited to realize directionally tunable spin transport.

4.
Nano Lett ; 20(10): 7572-7579, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32986443

RESUMO

Localized electrons subject to applied magnetic fields can restart to propagate freely through the lattice in delocalized magnetic Bloch states (MBSs) when the lattice periodicity is commensurate with the magnetic length. Twisted graphene superlattices with moiré wavelength tunability enable experimental access to the unique delocalization in a controllable fashion. Here, we report the observation and characterization of high-temperature Brown-Zak (BZ) oscillations which come in two types, 1/B and B periodicity, originating from the generation of integer and fractional MBSs, in the twisted bilayer and trilayer graphene superlattices, respectively. Coexisting periodic-in-1/B oscillations assigned to different moiré wavelengths are dramatically observed in small-angle twisted bilayer graphene, which may arise from angle-disorder-induced in-plane heteromoiré superlattices. Moreover, the vertical stacking of heteromoiré supercells in double-twisted trilayer graphene results in a mega-sized superlattice. The exotic superlattice contributes to the periodic-in-B oscillation and dominates the magnetic Bloch transport.

5.
ACS Nano ; 14(6): 7280-7286, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32427466

RESUMO

Defect-free graphene is impermeable to gases and liquids but highly permeable to thermal protons. Atomic-scale defects such as vacancies, grain boundaries, and Stone-Wales defects are predicted to enhance graphene's proton permeability and may even allow small ions through, whereas larger species such as gas molecules should remain blocked. These expectations have so far remained untested in experiment. Here, we show that atomically thin carbon films with a high density of atomic-scale defects continue blocking all molecular transport, but their proton permeability becomes ∼1000 times higher than that of defect-free graphene. Lithium ions can also permeate through such disordered graphene. The enhanced proton and ion permeability is attributed to a high density of eight-carbon-atom rings. The latter pose approximately twice lower energy barriers for incoming protons compared to that of the six-atom rings of graphene and a relatively low barrier of ∼0.6 eV for Li ions. Our findings suggest that disordered graphene could be of interest as membranes and protective barriers in various Li-ion and hydrogen technologies.

6.
Nature ; 577(7789): 199-203, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31915396

RESUMO

Bulk amorphous materials have been studied extensively and are widely used, yet their atomic arrangement remains an open issue. Although they are generally believed to be Zachariasen continuous random networks1, recent experimental evidence favours the competing crystallite model in the case of amorphous silicon2-4. In two-dimensional materials, however,  the corresponding questions remain unanswered. Here we report the synthesis, by laser-assisted chemical vapour deposition5, of centimetre-scale, free-standing, continuous and stable monolayer amorphous carbon, topologically distinct from disordered graphene. Unlike in bulk materials, the structure of monolayer amorphous carbon can be determined by atomic-resolution imaging. Extensive characterization by Raman and X-ray spectroscopy and transmission electron microscopy reveals the complete absence of long-range periodicity and a threefold-coordinated structure with a wide distribution of bond lengths, bond angles, and five-, six-, seven- and eight-member rings. The ring distribution is not a Zachariasen continuous random network, but resembles the competing (nano)crystallite model6. We construct a corresponding model that enables density-functional-theory calculations of the properties of monolayer amorphous carbon, in accordance with observations. Direct measurements confirm that it is insulating, with resistivity values similar to those of boron nitride grown by chemical vapour deposition. Free-standing monolayer amorphous carbon is surprisingly stable and deforms to a high breaking strength, without crack propagation from the point of fracture. The excellent physical properties of this stable, free-standing monolayer amorphous carbon could prove useful for permeation and diffusion barriers in applications such as magnetic recording devices and flexible electronics.

7.
ACS Nano ; 11(11): 11678-11686, 2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-29068661

RESUMO

The observation of micrometer size spin relaxation makes graphene a promising material for applications in spintronics requiring long-distance spin communication. However, spin dependent scatterings at the contact/graphene interfaces affect the spin injection efficiencies and hence prevent the material from achieving its full potential. While this major issue could be eliminated by nondestructive direct optical spin injection schemes, graphene's intrinsically low spin-orbit coupling strength and optical absorption place an obstacle in their realization. We overcome this challenge by creating sharp artificial interfaces between graphene and WSe2 monolayers. Application of circularly polarized light activates the spin-polarized charge carriers in the WSe2 layer due to its spin-coupled valley-selective absorption. These carriers diffuse into the superjacent graphene layer, transport over a 3.5 µm distance, and are finally detected electrically using Co/h-BN contacts in a nonlocal geometry. Polarization-dependent measurements confirm the spin origin of the nonlocal signal. We also demonstrate that such signal is absent if graphene is contacted to bilayer WSe2 where the inversion symmetry is restored.

8.
Nano Lett ; 17(9): 5361-5367, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28792227

RESUMO

Because of the chemical inertness of two dimensional (2D) hexagonal-boron nitride (h-BN), few atomic-layer h-BN is often used to encapsulate air-sensitive 2D crystals such as black phosphorus (BP). However, the effects of h-BN on Schottky barrier height, doping, and contact resistance are not well-known. Here, we investigate these effects by fabricating h-BN encapsulated BP transistors with cobalt (Co) contacts. In sharp contrast to directly Co contacted p-type BP devices, we observe strong n-type conduction upon insertion of the h-BN at the Co/BP interface. First-principles calculations show that this difference arises from the much larger interface dipole at the Co/h-BN interface compared to the Co/BP interface, which reduces the work function of the Co/h-BN contact. The Co/h-BN contacts exhibit low contact resistances (∼4.5 kΩ) and are Schottky barrier-free. This allows us to probe high electron mobilities (4,200 cm2/(V s)) and observe insulator-metal transitions even under two-terminal measurement geometry.

9.
Adv Mater ; 28(21): 4164, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27246921

RESUMO

On page 4090, B. Özyilmaz, C. H. Sow, and co-workers use a focused laser beam to modify the surface of a phosphorene device. With a simple focused laser beam, a part of the phosphorene can be scanned and converted into phosphorene-suboxide species, leaving behind a functional and active phosphorene-phosphorene suboxide junction in the device. Once the junction is formed, the photoresponsivity and photocurrent distribution of the device can be significantly altered with a qualitative difference in behavior. Photovoltaic-like behavior is observed, which is not found in the pristine sample.

10.
Adv Mater ; 28(21): 4090-6, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27028659

RESUMO

Enhanced photoresponse is obtained from phosphorene-phosphorene-suboxide. A scanning focused laser beam is employed as a straightforward approach to convert part of a phosphorene film into phosphorene suboxide, creating a functional junction in situ on an optoelectronic device based on phosphorene. As a result, the photoelectrical properties of the optoelectronic device are significantly improved.

11.
Nano Lett ; 16(4): 2145-51, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-26938106

RESUMO

Few-layer black phosphorus is a monatomic two-dimensional crystal with a direct band gap that has high carrier mobility for both holes and electrons. Similarly to other layered atomic crystals, like graphene or layered transition metal dichalcogenides, the transport behavior of few-layer black phosphorus is sensitive to surface impurities, adsorbates, and adatoms. Here we study the effect of Cu adatoms onto few-layer black phosphorus by characterizing few-layer black phosphorus field effect devices and by performing first-principles calculations. We find that the addition of Cu adatoms can be used to controllably n-dope few layer black phosphorus, thereby lowering the threshold voltage for n-type conduction without degrading the transport properties. We demonstrate a scalable 2D material-based complementary inverter which utilizes a boron nitride gate dielectric, a graphite gate, and a single bP crystal for both the p- and n-channels. The inverter operates at matched input and output voltages, exhibits a gain of 46, and does not require different contact metals or local electrostatic gating.

12.
Nanoscale ; 7(43): 18239-49, 2015 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-26486984

RESUMO

This study explored the influence of polyethylene glycol-linked multi-walled carbon nanotube (PEG-CNT) films on skeletal myogenic differentiation of human mesenchymal stem cells (hMSCs). PEG-CNT films were prepared with nanoscale surface roughness, orderly arrangement of PEG-CNTs, high hydrophilicity and high mechanical strength. Notably, PEG-CNT films alone could direct the skeletal myogenic differentiation of hMSCs in the absence of myogenic induction factors. The quantitative real-time polymerase chain reaction (RT-PCR) showed that the non-induced hMSCs plated on the PEG-CNT films, compared to the negative control, presented significant up-regulation of general myogenic markers including early commitment markers of myoblast differentiation protein-1 (MyoD) and desmin, as well as a late phase marker of myosin heavy chain-2 (MHC). Corresponding protein analysis by immunoblot assays corroborated these results. Skeletal muscle-specific markers, fast skeletal troponin-C (TnC) and ryanodine receptor-1 (Ryr) were also significantly increased in the non-induced hMSCs on PEG-CNT films by RT-PCR. For these cells, the commitment to specific skeletal myoblasts was further proved by the absence of enhanced adipogenic, chondrogenic and osteogenic markers. This study elucidated that PEG-CNT films supported a dedicated differentiation of hMSCs into a skeletal myogenic lineage and can work as a promising material towards skeletal muscle injury repair.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Desenvolvimento Muscular/efeitos dos fármacos , Músculo Esquelético/metabolismo , Nanotubos de Carbono/química , Polietilenoglicóis , Engenharia Tecidual/métodos , Humanos , Células-Tronco Mesenquimais/citologia , Músculo Esquelético/citologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia
13.
ACS Nano ; 9(10): 10411-21, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26364647

RESUMO

We demonstrate a straightforward and effective laser pruning approach to reduce multilayer black phosphorus (BP) to few-layer BP under ambient condition. Phosphorene oxides and suboxides are formed and the degree of laser-induced oxidation is controlled by the laser power. Since the band gaps of the phosphorene suboxide depend on the oxygen concentration, this simple technique is able to realize localized band gap engineering of the thin BP. Micropatterns of few-layer phosphorene suboxide flakes with unique optical and fluorescence properties are created. Remarkably, some of these suboxide flakes display long-term (up to 2 weeks) stability in ambient condition. Comparing against the optical properties predicted by first-principle calculations, we develop a "calibration" map in using focused laser power as a handle to tune the band gap of the BP suboxide flake. Moreover, the surface of the laser patterned region is altered to be sensitive to toxic gas by way of fluorescence contrast. Therefore, the multicolored display is further demonstrated as a toxic gas monitor. In addition, the BP suboxide flake is demonstrated to exhibit higher drain current modulation and mobility comparable to that of the pristine BP in the electronic application.

14.
Nano Lett ; 15(8): 4859-64, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26181908

RESUMO

We characterized plasmon propagation in graphene on thin films of the high-κ dielectric PbZr0.3Ti0.7O3 (PZT). Significant modulation (up to ±75%) of the plasmon wavelength was achieved with application of ultrasmall voltages (< ±1 V) across PZT. Analysis of the observed plasmonic fringes at the graphene edge indicates that carriers in graphene on PZT behave as noninteracting Dirac Fermions approximated by a semiclassical Drude response, which may be attributed to strong dielectric screening at the graphene/PZT interface. Additionally, significant plasmon scattering occurs at the grain boundaries of PZT from topographic and/or polarization induced graphene conductivity variation in the interior of graphene, reducing the overall plasmon propagation length. Lastly, through application of 2 V across PZT, we demonstrate the capability to persistently modify the plasmonic response of graphene through transient voltage application.

15.
ACS Nano ; 9(8): 8070-7, 2015 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-26207324

RESUMO

Black phosphorus has an orthorhombic layered structure with a layer-dependent direct band gap from monolayer to bulk, making this material an emerging material for photodetection. Inspired by this and the recent excitement over this material, we studied the optoelectronics characteristics of high-quality, few-layer black phosphorus-based photodetectors over a wide spectrum ranging from near-ultraviolet (UV) to near-infrared (NIR). It is demonstrated for the first time that black phosphorus can be configured as an excellent UV photodetector with a specific detectivity ∼3 × 10(13) Jones. More critically, we found that the UV photoresponsivity can be significantly enhanced to ∼9 × 10(4) A W(-1) by applying a source-drain bias (VSD) of 3 V, which is the highest ever measured in any 2D material and 10(7) times higher than the previously reported value for black phosphorus. We attribute such a colossal UV photoresponsivity to the resonant-interband transition between two specially nested valence and conduction bands. These nested bands provide an unusually high density of states for highly efficient UV absorption due to the singularity of their nature.

16.
Nano Lett ; 15(6): 3931-8, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-25939057

RESUMO

Bulk black phosphorus (BP) consists of puckered layers of phosphorus atoms. Few-layer BP, obtained from bulk BP by exfoliation, is an emerging candidate as a channel material in post-silicon electronics. A deep understanding of its physical properties and its full range of applications are still being uncovered. In this paper, we present a theoretical and experimental investigation of phonon properties in few-layer BP, focusing on the low-frequency regime corresponding to interlayer vibrational modes. We show that the interlayer breathing mode A(3)g shows a large redshift with increasing thickness; the experimental and theoretical results agree well. This thickness dependence is two times larger than that in the chalcogenide materials, such as few-layer MoS2 and WSe2, because of the significantly larger interlayer force constant and smaller atomic mass in BP. The derived interlayer out-of-plane force constant is about 50% larger than that of graphene and MoS2. We show that this large interlayer force constant arises from the sizable covalent interaction between phosphorus atoms in adjacent layers and that interlayer interactions are not merely of the weak van der Waals type. These significant interlayer interactions are consistent with the known surface reactivity of BP and have been shown to be important for electric-field induced formation of Dirac cones in thin film BP.

17.
Nat Commun ; 6: 6647, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25858614

RESUMO

Ultrathin black phosphorus is a two-dimensional semiconductor with a sizeable band gap. Its excellent electronic properties make it attractive for applications in transistor, logic and optoelectronic devices. However, it is also the first widely investigated two-dimensional material to undergo degradation upon exposure to ambient air. Therefore a passivation method is required to study the intrinsic material properties, understand how oxidation affects the physical properties and enable applications of phosphorene. Here we demonstrate that atomically thin graphene and hexagonal boron nitride can be used for passivation of ultrathin black phosphorus. We report that few-layer pristine black phosphorus channels passivated in an inert gas environment, without any prior exposure to air, exhibit greatly improved n-type charge transport resulting in symmetric electron and hole transconductance characteristics.

18.
ACS Appl Mater Interfaces ; 7(15): 8275-83, 2015 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-25822669

RESUMO

Graphene foams (GFs) are versatile nanoplatforms for biomedical applications because of their excellent physical, chemical, and mechanical properties. However, the brittleness and inflexibility of pristine GF (pGF) are some of the important factors restricting their widespread application. Here, a chemical-vapor-deposition-assisted method was used to synthesize 3D GFs, which were subsequently spin-coated with polymer to produce polymer-enriched 3D GFs with high conductivity and flexibility. Compared to pGF, both poly(vinylidene fluoride)-enriched GF (PVDF/GF) and polycaprolactone-enriched GF (PCL/GF) scaffolds showed improved flexibility and handleability. Despite the presence of the polymers, the polymer-enriched 3D GF scaffolds retained high levels of electrical conductivity because of the presence of microcracks that allowed for the flow of electrons through the material. In addition, polymer enrichment of GF led to an enhancement in the formation of calcium phosphate (Ca-P) compounds when the scaffolds were exposed to simulated body fluid. Between the two polymers tested, PCL enrichment of GF resulted in a higher in vitro mineralization nucleation rate because the oxygen-containing functional group of PCL had a higher affinity for Ca-P deposition and formation compared to the polar carbon-fluorine (C-F) bond in PVDF. Taken together, our current findings are a stepping stone toward future applications of polymer-enriched 3D GFs in the treatment of bone defects as well as other biomedical applications.


Assuntos
Materiais Biocompatíveis/síntese química , Líquidos Corporais/química , Fosfatos de Cálcio/síntese química , Grafite/química , Poliésteres/química , Polivinil/química , Condutividade Elétrica , Gases/química , Teste de Materiais , Impressão Tridimensional
19.
ACS Nano ; 9(4): 4138-45, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25769342

RESUMO

The presence of direct bandgap and high mobility in semiconductor few-layer black phosphorus offers an attractive prospect for using this material in future two-dimensional electronic devices. However, creation of barrier-free contacts which is necessary to achieve high performance in black phosphorus-based devices is challenging and currently limits their potential for applications. Here, we characterize fully encapsulated ultrathin (down to bilayer) black phosphorus field effect transistors fabricated under inert gas conditions by utilizing graphene as source-drain electrodes and boron nitride as an encapsulation layer. The observation of a linear ISD-VSD behavior with negligible temperature dependence shows that graphene electrodes lead to barrier-free contacts, solving the issue of Schottky barrier limited transport in the technologically relevant two-terminal field-effect transistor geometry. Such one-atom-thick conformal source-drain electrodes also enable the black phosphorus surface to be sealed, to avoid rapid degradation, with the inert boron nitride encapsulating layer. This architecture, generally applicable for other sensitive two-dimensional crystals, results in air-stable, hysteresis-free transport characteristics.

20.
Nat Commun ; 6: 6485, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25761440

RESUMO

Black phosphorus, a fast emerging two-dimensional material, has been configured as field effect transistors, showing a hole-transport-dominated ambipolar characteristic. Here we report an effective modulation on ambipolar characteristics of few-layer black phosphorus transistors through in situ surface functionalization with caesium carbonate (Cs2CO3) and molybdenum trioxide (MoO3), respectively. Cs2CO3 is found to strongly electron dope black phosphorus. The electron mobility of black phosphorus is significantly enhanced to ~27 cm(2) V(-1) s(-1) after 10 nm Cs2CO3 modification, indicating a greatly improved electron-transport behaviour. In contrast, MoO3 decoration demonstrates a giant hole-doping effect. In situ photoelectron spectroscopy characterization reveals significant surface charge transfer occurring at the dopants/black phosphorus interfaces. Moreover, the surface-doped black phosphorus devices exhibit a largely enhanced photodetection behaviour. Our findings coupled with the tunable nature of the surface transfer doping scheme ensure black phosphorus as a promising candidate for further complementary logic electronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...