Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 128(10): 2481-2489, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38433612

RESUMO

Porous liquids are new materials that provide permanent porosity in the liquid phase through the dispersion of nanoporous solid particles in a bulky solvent. Herein, we aim at understanding how new sustainable solvents such as deep eutectic solvent (DES) can be used to form porous stable suspensions for the capture of gases of interest for sustainable chemistry. The properties of an ionic DES, methyltriphenylphosphonium bromide/glycerol in a 1:3 molar composition, and its behavior at the interface with a metal-organic framework (MOF), ZIF-8, are here investigated by polarizable molecular dynamics simulations. The structural and dynamic properties of the DES are analyzed in the bulk liquid and in the interfacial regions with the MOF, namely, in the accessible cavities exposed at the surface. The porosity of the suspension is maintained, and it is caused not only by the Coulomb cohesive energy between cations and anions, which prevents the small anions from entering the pores, but also by the glycerol molecules not penetrating the small aperture of the ZIF-8 structure. This was further verified by simulating a system composed of glycerol and ZIF-8. Simulations with CO2 show its partition between the DES and the MOF, with higher concentrations registered in the MOF cavities.

2.
J Phys Chem Lett ; 15(1): 248-253, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38165169

RESUMO

Intermolecular interactions in ionic liquids are mainly governed by Coulombic forces. Attraction between cations has been previously observed and was attributed to dispersion interactions between nonpolar moieties, hydrogen bonding, or π stacking. In this study, we present the intriguing behavior of tetracyanoborate anions in ionic liquids that, unlike their dicyanamide and tricyanomethanide counterparts, form dimers in both solid and liquid phases. A joint simulation and experimental study uncovers the origin of such anion-anion attraction: stabilization by induction and dispersion forces between several cyano groups, which is strong enough to overcome electrostatic repulsion. These findings open up new opportunities in the rational design of ionic liquids, where interactions between ions of the same charge can be controlled and fine-tuned by the presence of cyano groups.

3.
J Phys Chem B ; 127(51): 11074-11082, 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38099721

RESUMO

The thermodynamics of newly designed tri- and tetraepoxyimidazolium NTf2 monomers reacting with several diamines used as curing agents to form epoxy/amine thermosets was studied. The ability of each epoxy/amine combination to induce cross-linking both through the substitution of multiple epoxy groups and through multiple additions to a single amine was investigated. Through an increased understanding of the thermodynamics of epoxy-amine polymerization in complex polyepoxy-ILs, it is possible to more thoroughly understand the factors affecting the reactivity in these complex systems. These calculations showed that while each possible epoxy-amine combination was exergonic to both forms of cross-linking, the degree to which both amines-induced cross-linking and epoxy-induced cross-linking was favored varied between epoxy-amine combinations. Thermodynamic results obtained using density functional theory were experimentally validated through differential scanning calorimetry results, wherein similar trends were noted between theory and experiment. Among the trends noted in amines-epoxy combinations tested, tetraepoxyimidazolium NTf2/PACM (i.e., a cycloaliphatic diamine) was found to be a prime candidate for amine cross-linking, with the addition of a second epoxy to a single amine group being notably the most negative of all epoxy-amine combinations at -77.6 kJ mol-1. While in the case of epoxy cross-linking, the aliphatic polyetheramine denoted Jeffamine-D230-containing systems were found to be the most exergonic, with additions of primary amines to triepoxyimidazolium and tetraepoxyimidazolium NTf2 averaging -86.9 kJ mol-1. Interaction energy analysis indicated that the aromatic amine named sulfanilamide is the most favorable to engage in reactions due to having the most negative interaction energies with already highly substituted epoxy monomers. These results can be used to adjust the cross-linking possibilities of tri- and tetraepoxyimidazolium NTf2/amine polymerization and give insight into the predominant cross-linking reactions in these unique systems.

4.
Langmuir ; 39(47): 16785-16796, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37970757

RESUMO

Room temperature ionic liquids (ILs) can create a strong accumulation of charges at solid interfaces by forming a very thin and dense electrical double layer (EDL). The structure of this EDL has important consequences in numerous applications involving ILs, for example, in supercapacitors, sensors, and lubricants, by impacting the interfacial capacitance, the charge carrier density of semiconductors, as well as the frictional properties of the interfaces. We have studied the interfacial structure of a long chain imidazolium-based IL (1-octyl-3-methylimidazolium dicyanamide) on several substrates: mica, silica, silicon, and molybdenum disulfide (MoS2), using atomic force microscopy (AFM) experiments and molecular dynamics (MD) simulations. We have observed 3 types of interfacial structures for the same IL, depending on the chemistry of the substrate and the water content, showing that the EDL structure is not an intrinsic property of the IL. We evidenced that at a low water content, neutral and apolar (thus hydrophobic) substrates promote a thin layer structure, where the ions are oriented parallel to the substrate and cations and anions are mixed in each layer. In contrast, a strongly charged (thus hydrophilic) substrate yields an extended structuration into several bilayers, while a heterogeneous layering with loose bilayer regions was observed on an intermediate polar and weakly charged substrate and on an apolar one at a high bulk water content. In the latter case, water contamination favors the formation of bilayer patches by promoting the segregation of the long chain IL into polar and apolar domains.

5.
ACS Nano ; 17(20): 19508-19513, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37812175

RESUMO

This Perspective points toward pathways to prepare porous ionic liquids using easily accessible materials, aiming for reduced environmental impact. We demonstrate that suspensions of porous solids are stable in eutectic mixtures, underscoring their potential for the preparation of porous ionic liquids. Porous ionic liquids retain the wide electrochemical window observed in their precursor pure ionic liquids, rendering them well-suited for green electrochemical reactions, particularly those involving gases whose solubility is enhanced in the porous suspensions. Moreover, their capacity as gas-rich media points to sustainable biomedical and pharmaceutical applications, provided nontoxic, biocompatible ionic liquids and porous solids are utilized.

6.
J Phys Chem B ; 127(14): 3266-3277, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37011369

RESUMO

Porous ionic liquids, which are suspensions of nanoporous particles in ionic liquids that maintain permanent porosity, are effective and selective media for the conversion of styrene oxide into styrene carbonate, absorbing CO2 [Zhou et al. Chem. Commun. 2021, 57, 7922-7925]. Here we elucidate the mechanism of selectivity using polarizable molecular dynamics simulations, which provide a detailed view on the structure of the porous ionic liquid and on the local solvation environments of the reacting species. The porous ionic liquids studied are composed of tetradecyltrihexylphosphonium chloride, or [P66614]Cl, and the ZIF-8 zinc-methylimidazolate metal-organic framework (MOF). The CL&Pol polarizable force field was extended to represent epoxide and cyclic carbonate functional groups, allowing the ionic liquid, the reactants, and the MOF to be all represented by fully flexible, polarizable force fields, providing a detailed description of interactions. The presence of reactant and product molecules leads to changes in the structure of the ionic liquid, revealed by domain analysis. The structure of local solvation environments, namely, the arrangement of charged moieties and CO2 around the epoxide ring of the reactant molecules, clearly indicate ring-opening the reaction mechanism. The MOF acts as a reservoir of CO2 through its free volume. The solute molecules are found in the accessible outer cavities of the MOF, which promotes reaction of the epoxide with CO2 excluding other epoxide molecules, thereby preventing the formation of oligomers, which explains the selectivity toward conversion to cyclic carbonates.

7.
Phys Chem Chem Phys ; 25(9): 6808-6816, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36790213

RESUMO

Surface active ionic liquids (SAILs) combine useful characteristics of both ionic liquids (ILs) and surfactants, hence are promising candidates for a wide range of applications. However, the effect of SAIL ionic structures on their physicochemical properties remains unclear, which limits their uptake. To address this knowledge gap, in this work we investigated the density, viscosity, surface tension, and corresponding critical micelle concentration in water, as well as gas absorption of SAILs with a variety of cation and anion structures. SAILs containing anions with linear alkyl chains have smaller molar volumes than those with branched alkyl chains, because linear alkyl chains are interdigitated to a greater extent, leading to more compact packing. This interdigitation also results in SAILs being about two orders of magnitude more viscous than comparable conventional ILs. SAILs at the liquid-air interface orient alkyl chains towards the air, leading to low surface tensions closer to n-alkanes than conventional ILs. Critical temperatures of about 900 K could be estimated for all SAILs from their surface tensions. When dissolved in water, SAILs adsorb at the liquid-air interface and lower the surface tension, like conventional surfactants in water, after which micelles form. Molecular simulations show that the micelles are spherical and that lower critical micelle concentrations correspond to the formation of aggregates with a larger number of ion pairs. CO2 and N2 absorption capacities are examined and we conclude that ionic liquids with larger non-polar domains absorb larger quantities of both gases.

8.
J Phys Chem B ; 126(47): 9901-9910, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36383753

RESUMO

The efficient capture of CO2 from flue gas or directly from the atmosphere is a key subject to mitigate global warming, with several chemical and physical absorption methods previously reported. Through polarizable molecular dynamics (MD) simulations and high-level quantum chemical (QC) calculations, the physical and chemical absorption of CO2 by ionic liquids based on imidazolium cations bearing oxirane groups was investigated. The ability of the imidazolium group to absorb CO2 was found to be prevalent in both the tri- and tetraepoxidized imidazolium ionic liquids (ILs) with coordination numbers over 2 for CO2 within the first solvation shell in both systems. Thermodynamic analysis of the addition of CO2 to convert epoxy groups to cyclic carbonates also indicated that the overall reaction is exergonic for all systems tested, allowing for chemical absorption of CO2 to also be favored. The rate-determining step of the chemical absorption involved the initial opening of the epoxy ring through addition of the chloride anion and was seen to vary greatly between the epoxy groups tested. Among the groups tested, the less sterically hindered monoepoxy side of the triepoxidized imidazolium was shown to be uniquely capable of undergoing intramolecular hydrogen bonding and thus lowering the barrier required for the intermediate structure to form during the reaction. Overall, this theoretical investigation highlights the potential for epoxidized imidazolium chloride ionic liquids for simultaneous chemical and physical absorption of CO2.


Assuntos
Líquidos Iônicos , Líquidos Iônicos/química , Dióxido de Carbono/química , Ânions/química , Termodinâmica , Ligação de Hidrogênio
9.
J Phys Chem B ; 126(37): 7143-7158, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36094902

RESUMO

Understanding the connection between the molecular structure of ionic liquids and their properties is of paramount importance for practical applications. However, this connection can only be established if a broad range of physicochemical properties on different length and time scales is already available. Even then, the interpretation of the results often remains ambiguous due to the natural limits of experimental approaches. Here we use fast-field cycling (FFC) to access both translational and rotational dynamics of ionic liquids. These combined with a comprehensive physicochemical characterization and MD simulations provide a toolkit to give insight into the mechanisms of molecular mechanics. The FFC results are consistent with the computer simulation and conventional physicochemical approaches. We show that curling of the side chains around the positively charged cationic core is essential for the properties of ether-functionalized ionic liquids, and we demonstrate that neither geometry nor polarity alone are sufficient to explain the macroscopic properties.


Assuntos
Líquidos Iônicos , Éter , Líquidos Iônicos/química , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Estrutura Molecular
10.
Chem Sci ; 13(32): 9176-9190, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36093026

RESUMO

Ionic liquids are becoming increasingly popular for practical applications such as biomass processing and lithium-ion batteries. However, identifying ionic liquids with optimal properties for specific applications by trial and error is extremely inefficient since there are a vast number of potential candidate ions. Here we combine experimental and computational techniques to determine how the interplay of fluorination, flexibility and mass affects the transport properties of ionic liquids with the popular imide anion. We observe that fluorination and flexibility have a large impact on properties such as viscosity, whereas the influence of mass is negligible. Using targeted modifications, we show that conformational flexibility provides a significant contribution to the success of fluorination as a design element. Contrary to conventional wisdom, fluorination by itself is thus not a guarantor for beneficial properties such as low viscosity.

11.
Chem Sci ; 13(31): 9062-9073, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36091212

RESUMO

The branching of ionic liquid cation sidechains utilizing silicon as the backbone was explored and it was found that this structural feature leads to fluids with remarkably low density and viscosity. The relatively low liquid densities suggest a large free volume in these liquids. Argon solubility was measured using a precise saturation method to probe the relative free volumes. Argon molar solubilities were slightly higher in ionic liquids with alkylsilane and siloxane groups within the cation, compared to carbon-based branched groups. The anion size, however, showed by far the dominant effect on argon solubility. Thermodynamic solvation parameters were derived from the solubility data and the argon solvation environment was modelled utilizing the polarizable CL&Pol force field. Semiquantitative analysis was in agreement with trends established from the experimental data. The results of this investigation demonstrate design principles for targeted ionic liquids when optimisation for the free volume is required, and demonstrate the utility of argon as a simple, noninteracting probe. As more ionic liquids find their way into industrial processes of scale, these findings are important for their utilisation in the capture of any gaseous solute, gas separation, or in processes involving the transformation of gases or small molecules.

12.
Phys Chem Chem Phys ; 24(5): 3144-3162, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35040843

RESUMO

The practical use of ionic liquids (ILs) is benefiting from a growing understanding of the underpinning structural and dynamic properties, facilitated through classical molecular dynamics (MD) simulations. The predictive and explanatory power of a classical MD simulation is inextricably linked to the underlying force field. A key aspect of the forcefield for ILs is the ability to recover charge based interactions. Our focus in this paper is on the description and recovery of charge transfer and polarisability effects, demonstrated through MD simulations of the widely used 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide [C4C1im][NTf2] IL. We study the charge distributions generated by a range of ab initio methods, and present an interpolation method for determining atom-wise scaled partial charges. Two novel methods for determining the mean field (total) charge transfer from anion to cation are presented. The impact of using different charge models and different partial charge scaling (unscaled, uniformly scaled, atom-wise scaled) are compared to fully polarisable simulations. We study a range of Drude particle explicitly polarisable potentials and shed light on the performance of current approaches to counter known problems. It is demonstrated that small changes in the charge description and MD methodology can have a significant impact; biasing some properties, while leaving others unaffected within the structural and dynamic domains.

13.
Phys Chem Chem Phys ; 23(40): 23130-23140, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34617083

RESUMO

Four divalent ionic liquids based on imidazolium cations with alkyl or ether functionalized side-chains were synthesised and characterized: 3,3'-(tetraethyleneglycol-1,11-diyl)bis(1-methyl-1H-imidazolium)bromide, [tetraEG(mim)2][Br]2, 3,3'-(tetraethyleneglycol-1,11-diyl)bis(1-methyl-1H-imidazolium)acetate, [tetraEG(mim)2][OAc]2, 1-butyl-3-methylimidazolium malonate, [C4mim]2[Mal], and 3-butyl-1-methylimidazolium glutarate, [C4mim]2[Glut]. Their densities vary between 1.1 and 1.5 g cm-3 and their viscosities between 0.2 and 4 Pa s at 353 K. We found that the molar volumes are not additive, especially in the case of the divalent ionic liquids based on the double-charged imidazolium cations, meaning that they cannot be predicted using common group contribution methods. The reason for this behaviour could be explained by the structure of the cations, which is dominated by intramolecular hydrogen bonding. The carboxylate-based divalent ionic liquids absorb reversibly large quantities of carbon dioxide following a chemical mechanism described before. An improved 1 : 1 stoichiometry is achieved both in a double-charged imidazolium acetate ionic liquid and in imidazolium carboxylate salts with double charged anions. This behaviour places these ionic liquids amongst the best performing for carbon dioxide absorption.

14.
J Chem Inf Model ; 61(9): 4521-4536, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34406000

RESUMO

Water is a unique solvent that is ubiquitous in biology and present in a variety of solutions, mixtures, and materials settings. It therefore forms the basis for all molecular dynamics simulations of biological phenomena, as well as for many chemical, industrial, and materials investigations. Over the years, many water models have been developed, and it remains a challenge to find a single water model that accurately reproduces all experimental properties of water simultaneously. Here, we report a comprehensive comparison of structural and dynamic properties of 30 commonly used 3-point, 4-point, 5-point, and polarizable water models simulated using consistent settings and analysis methods. For the properties of density, coordination number, surface tension, dielectric constant, self-diffusion coefficient, and solvation free energy of methane, models published within the past two decades consistently show better agreement with experimental values compared to models published earlier, albeit with some notable exceptions. However, no single model reproduced all experimental values exactly, highlighting the need to carefully choose a water model for a particular study, depending on the phenomena of interest. Finally, machine learning algorithms quantified the relationship between the water model force field parameters and the resulting bulk properties, providing insight into the parameter-property relationship and illustrating the challenges of developing a water model that can accurately reproduce all properties of water simultaneously.


Assuntos
Simulação de Dinâmica Molecular , Água , Solventes , Termodinâmica
15.
J Chem Phys ; 154(22): 224502, 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34241234

RESUMO

The solubility of synthetic indigo dye was measured at room temperature in three deep eutectic solvents (DESs)-1:3 choline chloride:1,4-butanediol, 1:3 tetrabutylammonium bromide:1,4-butanediol, and 1:2 choline chloride:p-cresol-to test the hypothesis that the structure of DESs can be systematically altered, to induce specific DES-solute interactions, and, thus, tune solubility. DESs were designed starting from the well-known cholinium chloride salt mixed with the partially amphiphilic 1,4-butanediol hydrogen bond donor (HBD), and then, the effect of increasing salt hydrophobicity (tetrabutylammonium bromide) and HBD hydrophobicity (p-cresol) was explored. Measurements were made between 2.5 and 25 wt. % H2O, as a reasonable range representing atmospherically absorbed water, and molecular dynamics simulations were used for structural analysis. The choline chloride:1,4-butanediol DES had the lowest indigo solubility, with only the hydrophobic character of the alcohol alkyl spacers. Solubility was highest for indigo in the tetrabutylammonium bromide:1,4-butanediol DES with 2.5 wt. % H2O due to interactions of indigo with the hydrophobic cation, but further addition of water caused this to reduce in line with the added water mole fraction, as water solvated the cation and reduced the extent of the hydrophobic region. The ChCl:p-cresol DES did not have the highest solubility at 2.5 wt. % H2O, but did at 25 wt. % H2O. Radial distribution functions, coordination numbers, and spatial distribution functions demonstrate that this is due to strong indigo-HBD interactions, which allow this system to resist the higher mole fraction of water molecules and retain its solubility. The DES is, therefore, a host to local-composition effects in solvation, where its hydrophobic moieties concentrate around the hydrophobic solute, illustrating the versatility of DES as solvents.

16.
Angew Chem Int Ed Engl ; 60(23): 12876-12882, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33754419

RESUMO

Porous ionic liquids are non-volatile, versatile materials that associate porosity and fluidity. New porous ionic liquids, based on the ZIF-8 metal-organic framework and on phosphonium acetate or levulinate salts, were prepared and show an increased capacity to absorb carbon dioxide at low pressures. Porous suspensions based on phosphonium levulinate ionic liquid absorb reversibly 103 % more carbon dioxide per mass than pure ZIF-8 at 1 bar and 303 K. We show how the rational combination of MOFs with ionic liquids can greatly enhance low pressure CO2 absorption, paving the way towards a new generation of high-performance, readily available liquid materials for effective low pressure carbon capture.

17.
J Chem Theory Comput ; 17(3): 1606-1617, 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33555860

RESUMO

The polarizable CL&Pol force field presented in our previous study, Transferable, Polarizable Force Field for Ionic Liquids (J. Chem. Theory Comput. 2019, 15, 5858, DOI: http://doi.org/10.1021/acs.jctc.9b0068910.1021/acs.jctc.9b00689), is extended to electrolytes, protic ionic liquids (PIL), deep eutectic solvents (DES), and glycols. These systems are problematic in polarizable simulations because they contain either small, highly charged ions or strong hydrogen bonds, which cause trajectory instabilities due to the pull exerted on the induced dipoles. We use a Tang-Toennies (TT) function to dampen, or smear, the interactions between charges and induced dipole at a short range involving small, highly charged atoms (such as hydrogen or lithium), thus preventing the "polarization catastrophe". The new force field gives stable trajectories and is validated through comparison with experimental data on density, viscosity, and ion diffusion coefficients of liquid systems of the above-mentioned classes. The results also shed light on the hydrogen-bonding pattern in ethylammonium nitrate, a PIL, for which the literature contains conflicting views. We describe the implementation of the TT damping function, of the temperature-grouped Nosé-Hoover thermostat for polarizable molecular dynamics (MD) and of the periodic perturbation method for viscosity evaluation from non-equilibrium trajectories in the LAMMPS MD code. The main result of this work is the wider applicability of the CL&Pol polarizable force field to new, important classes of fluids, achieving robust trajectories and a good description of equilibrium and transport properties in challenging systems. The fragment-based approach of CL&Pol will allow ready extension to a wide variety of PILs, DES, and electrolytes.

18.
J Chem Phys ; 154(8): 084504, 2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33639754

RESUMO

Knowledge of how the molecular structures of ionic liquids (ILs) affect their properties at electrified interfaces is key to the rational design of ILs for electric applications. Polarizable molecular dynamics simulations were performed to investigate the structural, electrical, and dynamic properties of electric double layers (EDLs) formed by imidazolium dicyanamide ([ImX1][DCA]) at the interface with the molybdenum disulfide electrode. The effect of side chain of imidazolium on the properties of EDLs was analyzed by using 1-ethyl-3-methylimidazolium ([Im21]), 1-octyl-3-methylimidazolium ([Im81]), 1-benzyl-3-methylimidazolium ([ImB1]), and 1-(2-hydroxyethyl)-3-methylimidazolium ([ImO1]) as cations. Using [Im21] as reference, we find that the introduction of octyl or benzyl groups significantly alters the interfacial structures near the cathode because of the reorientation of cations. For [Im81], the positive charge on the cathode induces pronounced polar and non-polar domain separation. In contrast, the hydroxyl group has a minor effect on the interfacial structures. [ImB1] is shown to deliver slightly larger capacitance than other ILs even though it has larger molecular volume than [Im21]. This is attributed to the limiting factor for capacitance being the strong association between counter-ions, instead of the free space available to ions at the interface. For [Im81], the charging mechanism is mainly the exchange between anions and octyl tails, while for the other ILs, the mechanism is mainly the exchange of counter-ions. Analysis on the charging process shows that the charging speed does not correlate strongly with macroscopic bulk dynamics like viscosity. Instead, it is dominated by local displacement and reorientation of ions.

19.
Phys Chem Chem Phys ; 23(1): 107-111, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33346262

RESUMO

The Deep Eutectic Solvents/Systems (DESs) choline chloride:urea (xChCl = 0.33) and choline chloride:glycolic acid (xChCl = 0.5) were investigated using viscosity-corrected 35Cl NMR spectroscopy and molecular dynamics simulations to probe the role of chloride as a function of water content. Three Cl- solvation regimes are revealed, with high-symmetry environments for pure and highly dilute DES, and an unusual low-symmetry interstitial region where the primary coordination sphere is most disordered.

20.
FEBS Lett ; 595(1): 41-57, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32997337

RESUMO

Aquaporins are transmembrane water channels found in almost every living organism. Numerous studies have brought a good understanding of both water transport through their pores and the regulations taking place at the molecular level, but subtleties remain to be clarified. Recently, a voltage-related gating mechanism involving the conserved arginine of the channel's main constriction was captured for human aquaporins through molecular dynamics studies. With a similar approach, we show that this voltage-gating could be conserved among this family and that the underlying mechanism could explain part of plant AQPs diversity when contextualized to high ionic concentrations provoked by drought. Finally, we identified residues as adaptive traits which constitute good targets for drought resistance plant breeding research.


Assuntos
Aquaporinas/metabolismo , Ativação do Canal Iônico , Estresse Fisiológico , Sequência de Aminoácidos , Aquaporinas/química , Humanos , Simulação de Dinâmica Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...