Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosensors (Basel) ; 9(8): 201, 2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35855953

RESUMO

Ionogel are versatile materials, as they present the electrical properties of ionic liquids and also dimensional stability, since they are trapped in a solid matrix, allowing application in electronic devices such as gas sensors and electronic noses. In this work, ionogels were designed to act as a sensitive layer for the detection of volatiles in a custom-made electronic nose. Ionogels composed of gelatin and a single imidazolium ionic liquid were doped with bare and functionalized iron oxide nanoparticles, producing ionogels with adjustable target selectivity. After exposing an array of four ionogels to 12 distinct volatile organic compounds, the collected signals were analyzed by principal component analysis (PCA) and by several supervised classification methods, in order to assess the ability of the electronic nose to distinguish different volatiles, which showed accuracy above 98%.

2.
ISOEN 2019 (2019) ; 2019: 1-3, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-35939279

RESUMO

The materials described in this work result from the self-assembly of liquid crystals and ionic liquids into droplets, stabilized within a biopolymeric matrix. These systems are extremely versatile gels, in terms of composition, and offer potential for fine tuning of both structure and function, as each individual component can be varied. Here, the characterization and application of these gels as sensing thin films in gas sensor devices is presented. The unique supramolecular structure of the gels is explored for molecular recognition of volatile organic compounds (VOCs) by employing gels with distinct formulations to yield combinatorial optical and electrical responses used in the distinction and identification of VOCs.

3.
Adv Funct Mater ; 27(27)2017 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-28747856

RESUMO

The cooperative assembly of biopolymers and small molecules can yield functional materials with precisely tunable properties. Here, the fabrication, characterization, and use of multicomponent hybrid gels as selective gas sensors are reported. The gels are composed of liquid crystal droplets self-assembled in the presence of ionic liquids, which further coassemble with biopolymers to form stable matrices. Each individual component can be varied and acts cooperatively to tune gels' structure and function. The unique molecular environment in hybrid gels is explored for supramolecular recognition of volatile compounds. Gels with distinct compositions are used as optical and electrical gas sensors, yielding a combinatorial response conceptually mimicking olfactory biological systems, and tested to distinguish volatile organic compounds and to quantify ethanol in automotive fuel. The gel response is rapid, reversible, and reproducible. These robust, versatile, modular, pliant electro-optical soft materials possess new possibilities in sensing triggered by chemical and physical stimuli.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...