Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 14(3): e11104, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38435010

RESUMO

Current environmental changes may increase temporal variability of life history traits of species thus affecting their long-term population growth rate and extinction risk. If there is a general relationship between environmental variances (EVs) and mean annual survival rates of species, that relationship could be used as a guideline for analyses of population growth and extinction risk for populations, where data on EVs are missing. For this purpose, we present a comprehensive compilation of 252 EV estimates from 89 species belonging to five vertebrate taxa (birds, mammals, reptiles, amphibians and fish) covering mean annual survival rates from 0.01 to 0.98. Since variances of survival rates are constrained by their means, particularly for low and high mean survival rates, we assessed whether any observed relationship persisted after applying two types of commonly used variance stabilizing transformations: relativized EVs (observed/mathematical maximum) and logit-scaled EVs. With raw EVs at the arithmetic scale, mean-variance relationships of annual survival rates were hump-shaped with small EVs at low and high mean survival rates and higher (and widely variable) EVs at intermediate mean survival rates. When mean annual survival rates were related to relativized EVs the hump-shaped pattern was less distinct than for raw EVs. When transforming EVs to logit scale the relationship between mean annual survival rates and EVs largely disappeared. The within-species juvenile-adult slopes were mainly positive at low (<0.5) and negative at high (>0.5) mean survival rates for raw and relativized variances while these patterns disappeared when EVs were logit transformed. Uncertainties in how to interpret the results of relativized and logit-scaled EVs, and the observed high variation in EV's for similar mean annual survival rates illustrates that extrapolations of observed EVs and tests of life history drivers of survival-EV relationships need to also acknowledge the large variation in these parameters.

2.
J Anim Ecol ; 92(10): 1979-1991, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37491892

RESUMO

How demographic factors lead to variation or change in growth rates can be investigated using life table response experiments (LTRE) based on structured population models. Traditionally, LTREs focused on decomposing the asymptotic growth rate, but more recently decompositions of annual 'realized' growth rates using 'transient' LTREs have gained in popularity. Transient LTREs have been used particularly to understand how variation in vital rates translate into variation in growth for populations under long-term study. For these, complete population models may be constructed to investigate how temporal variation in environmental drivers affect vital rates. Such investigations have usually come down to estimating covariate coefficients for the effects of environmental variables on vital rates, but formal ways of assessing how they lead to variation in growth rates have been lacking. We extend transient LTREs to further partition the contributions from vital rates into contributions from temporally varying factors that affect them. The decomposition allows one to compare the resultant effect on the growth rate of different environmental factors, as well as density dependence, which may each act via multiple vital rates. We also show how realized growth rates can be decomposed into separate components from environmental and demographic stochasticity. The latter is typically omitted in LTRE analyses. We illustrate these extensions with an integrated population model (IPM) for data from a 26 years study on northern wheatears (Oenanthe oenanthe), a migratory passerine bird breeding in an agricultural landscape. For this population, consisting of around 50-120 breeding pairs per year, we partition variation in realized growth rates into environmental contributions from temperature, rainfall, population density and unexplained random variation via multiple vital rates, and from demographic stochasticity. The case study suggests that variation in first year survival via the unexplained random component, and adult survival via temperature are two main factors behind environmental variation in growth rates. More than half of the variation in growth rates is suggested to come from demographic stochasticity, demonstrating the importance of this factor for populations of moderate size.


Assuntos
Crescimento Demográfico , Animais , Densidade Demográfica , Dinâmica Populacional
4.
Trends Ecol Evol ; 38(1): 55-71, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36202636

RESUMO

Adaptive management (AM) is widely promoted to improve management of natural resources, yet its implementation is challenging. We show that obstacles to the implementation of AM are related not only to the AM process per se but also to external factors such as ecosystem properties and governance systems. To overcome obstacles, there is a need to build capacities within the AM process by ensuring adequate resources, management tools, collaboration, and learning. Additionally, building capacities in the legal and institutional frames can enable the necessary flexibility in the governance system. Furthermore, in systems experiencing profound changes in wildlife populations, building such capacities may be even more critical as more flexibility will be needed to cope with increased uncertainty and changed environmental conditions.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Animais Selvagens , Incerteza
5.
Commun Earth Environ ; 3(1): 217, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36158999

RESUMO

European green agricultural policies have been relaxed to allow cultivation of fallow land to produce animal feed and meet shortfalls in exports from Ukraine and Russia. However, conversion of semi-natural habitats will disproportionately impact long term biodiversity and food security.

6.
Glob Chang Biol ; 28(21): 6209-6227, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35899584

RESUMO

The relationships between species abundance or occurrence versus spatial variation in climate are commonly used in species distribution models to forecast future distributions. Under "space-for-time substitution", the effects of climate variation on species are assumed to be equivalent in both space and time. Two unresolved issues of space-for-time substitution are the time period for species' responses and also the relative contributions of rapid- versus slow reactions in shaping spatial and temporal responses to climate change. To test the assumption of equivalence, we used a new approach of climate decomposition to separate variation in temperature and precipitation in Fennoscandia into spatial, temporal, and spatiotemporal components over a 23-year period (1996-2018). We compiled information on land cover, topography, and six components of climate for 1756 fixed route surveys, and we modeled annual counts of 39 bird species breeding in the mountains of Fennoscandia. Local abundance of breeding birds was associated with the spatial components of climate as expected, but the temporal and spatiotemporal climatic variation from the current and previous breeding seasons were also important. The directions of the effects of the three climate components differed within and among species, suggesting that species can respond both rapidly and slowly to climate variation and that the responses represent different ecological processes. Thus, the assumption of equivalent species' response to spatial and temporal variation in climate was seldom met in our study system. Consequently, for the majority of our species, space-for-time substitution may only be applicable once the slow species' responses to a changing climate have occurred, whereas forecasts for the near future need to accommodate the temporal components of climate variation. However, appropriate forecast horizons for space-for-time substitution are rarely considered and may be difficult to reliably identify. Accurately predicting change is challenging because multiple ecological processes affect species distributions at different temporal scales.


Assuntos
Aves , Mudança Climática , Animais , Aves/fisiologia , Ecossistema , Dinâmica Populacional , Estações do Ano , Temperatura
7.
Proc Natl Acad Sci U S A ; 117(50): 31969-31978, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33257553

RESUMO

Temporal variation in natural selection is predicted to strongly impact the evolution and demography of natural populations, with consequences for the rate of adaptation, evolution of plasticity, and extinction risk. Most of the theory underlying these predictions assumes a moving optimum phenotype, with predictions expressed in terms of the temporal variance and autocorrelation of this optimum. However, empirical studies seldom estimate patterns of fluctuations of an optimum phenotype, precluding further progress in connecting theory with observations. To bridge this gap, we assess the evidence for temporal variation in selection on breeding date by modeling a fitness function with a fluctuating optimum, across 39 populations of 21 wild animals, one of the largest compilations of long-term datasets with individual measurements of trait and fitness components. We find compelling evidence for fluctuations in the fitness function, causing temporal variation in the magnitude, but not the direction of selection. However, fluctuations of the optimum phenotype need not directly translate into variation in selection gradients, because their impact can be buffered by partial tracking of the optimum by the mean phenotype. Analyzing individuals that reproduce in consecutive years, we find that plastic changes track movements of the optimum phenotype across years, especially in bird species, reducing temporal variation in directional selection. This suggests that phenological plasticity has evolved to cope with fluctuations in the optimum, despite their currently modest contribution to variation in selection.


Assuntos
Aves/fisiologia , Mamíferos/fisiologia , Modelos Genéticos , Reprodução/genética , Seleção Genética/fisiologia , Animais , Evolução Biológica , Conjuntos de Dados como Assunto , Aptidão Genética , Fatores de Tempo
8.
Ecol Evol ; 10(18): 10057-10065, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33005363

RESUMO

Abundant citizen science data on species occurrences are becoming increasingly available and enable identifying composition of communities occurring at multiple sites with high temporal resolution. However, for species displaying temporary patterns of local occurrences that are transient to some sites, biodiversity measures are clearly dependent on the criteria used to include species into local species lists. Using abundant opportunistic citizen science data from frequently visited wetlands, we investigated the sensitivity of α- and ß-diversity estimates to the use raw versus detection-corrected data and to the use of inclusion criteria for species presence reflecting alternative site use. We tested seven inclusion criteria (with varying number of days required to be present) on time series of daily occurrence status during a breeding season of 90 days for 77 wetland bird species. We show that even when opportunistic presence-only observation data are abundant, raw data may not produce reliable local species richness estimates and rank sites very differently in terms of species richness. Furthermore, occupancy model based α- and ß-diversity estimates were sensitive to the inclusion criteria used. Total species lists (all species observed at least once during a season) may therefore mask diversity differences among sites in local communities of species, by including vagrant species on potentially breeding communities and change the relative rank order of sites in terms of species richness. Very high sampling effort does not necessarily free opportunistic data from its inherent bias and can produce a pattern in which many species are observed at least once almost everywhere, thus leading to a possible paradox: The large amount of biological information may hinder its usefulness. Therefore, when prioritizing among sites to manage or preserve species diversity estimates need to be carefully related to relevant inclusion criteria depending on the diversity estimate in focus.

9.
J Anim Ecol ; 89(12): 2922-2933, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32981078

RESUMO

Assessing the source-sink status of populations and habitats is of major importance for understanding population dynamics and for the management of natural populations. Sources produce a net surplus of individuals (per capita contribution to the metapopulation > 1) and will be the main contributors for self-sustaining populations, whereas sinks produce a deficit (contribution < 1). However, making these types of assessments is generally hindered by the problem of separating mortality from permanent emigration, especially when survival probabilities as well as moved distances are habitat-specific. To address this long-standing issue, we propose a spatial multi-event integrated population model (IPM) that incorporates habitat-specific dispersal distances of individuals. Using information about local movements, this IPM adjusts survival estimates for emigration outside the study area. Analysing 24 years of data on a farmland passerine (the northern wheatear Oenanthe oenanthe), we assessed habitat-specific contributions, and hence the source-sink status and temporal variation of two key breeding habitats, while accounting for habitat- and sex-specific local dispersal distances of juveniles and adults. We then examined the sensitivity of the source-sink analysis by comparing results with and without accounting for these local movements. Estimates of first-year survival, and consequently habitat-specific contributions, were higher when local movement data were included. The consequences from including movement data were sex specific, with contribution shifting from sink to likely source in one habitat for males, and previously noted habitat differences for females disappearing. Assessing the source-sink status of habitats is extremely challenging. We show that our spatial IPM accounting for local movements can reduce biases in estimates of the contribution by different habitats, and thus reduce the overestimation of the occurrence of sink habitats. This approach allows combining all available data on demographic rates and movements, which will allow better assessment of source-sink dynamics and better informed conservation interventions.


Assuntos
Ecossistema , Passeriformes , Animais , Feminino , Dinâmica Populacional , Aves Canoras
10.
Sci Rep ; 10(1): 11655, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32669625

RESUMO

This study aims to identify environmentally suitable areas for 15 of the most harmful invasive alien terrestrial vertebrates (IATV) in Europe in a transparent and replicable way. We used species distribution models and publicly-available data from GBIF to predict environmental suitability and to identify hotspots of IATV accounting for knowledge gaps in their distributions. To deal with the ecological particularities of invasive species, we followed a hierarchical approach to estimate the global climatic suitability for each species and incorporated this information into refined environmental suitability models within Europe. Combined predictions on environmental suitability identified potential areas of IATV concentrations or hotspots. Uncertainty of predictions identified regions requiring further survey efforts for species detection. Around 14% of Europe comprised potential hotspots of IATV richness, mainly located in northern France, UK, Belgium and the Netherlands. IATV coldspots covered ~ 9% of Europe, including southern Sweden and Finland, and northern Germany. Most of Europe (~ 77% area) comprised uncertain suitability predictions, likely caused by a lack of data. Priorities on prevention and control should focus on potential hotspots where harmful impacts might concentrate. Promoting the collection of presence data within data-deficient areas is encouraged as a core strategy against IATVs.

11.
Sci Total Environ ; 741: 140407, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32603947

RESUMO

Variation of habitats and resources important for farmland birds seems to be only partly captured by ordinary statistics on land-use and agricultural production. For instance, densities of rodents being prey for owls and raptors or structures of rural architecture providing nesting sites for many species are central for bird diversity but are not reported in any official statistics. Thus, modelling species distributions, population abundance and trends of farmland birds may miss important predictive habitat elements. Here, we involve local socio-economy factors as a source of additional information on rural habitat to test whether it improves predictions of barn owl occurrence in 2768 churches across Poland. Barn owls occurred in 778 churches and seemed to prefer old churches made of brick located in regions with a milder climate, higher share of arable land and pastures, low road density and low levels of light pollution. Including data on local unemployment, the proportion of elder citizens, commune income per citizen, the share of citizens with high education and share of farmers among working population improved the model substantially and some of these variables predicted barn owl occurrence better than several land-use and climate data. Barn owls were more likely to occur in areas with high unemployment, a higher proportion of older citizens in a local population and higher share of farmers among working population. Importantly, the socio-economy variables were correlated with the barn owl occurrence despite all climatic, infrastructure and land-use data were present in the model. We conclude that the socio-economy of local societies may add important but overlooked information that links to spatial variation in farmland biodiversity.


Assuntos
Estrigiformes , Agricultura , Animais , Biodiversidade , Ecossistema , Polônia
12.
Sci Rep ; 10(1): 9290, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32518318

RESUMO

The Northern Wheatear (Oenanthe oenanthe, including the nominate and the two subspecies O. o. leucorhoa and O. o. libanotica) and the Seebohm's Wheatear (Oenanthe seebohmi) are today regarded as two distinct species. Before, all four taxa were regarded as four subspecies of the Northern Wheatear. Their classification has exclusively been based on ecological and morphological traits, while their molecular characterization is still missing. With this study, we used next-generation sequencing to assemble 117 complete mitochondrial genomes covering O. o. oenanthe, O. o. leucorhoa and O. seebohmi. We compared the resolution power of each individual mitochondrial marker and concatenated marker sets to reconstruct the phylogeny and estimate speciation times of three taxa. Moreover, we tried to identify the origin of migratory wheatears caught on Helgoland (Germany) and on Crete (Greece). Mitogenome analysis revealed two different ancient lineages that separated around 400,000 years ago. Both lineages consisted of a mix of subspecies and species. The phylogenetic trees, as well as haplotype networks are incongruent with the present morphology-based classification. Mitogenome could not distinguish these presumed species. The genetic panmixia among present populations and taxa might be the consequence of mitochondrial introgression between ancient wheatear populations.


Assuntos
Especiação Genética , Genoma Mitocondrial/genética , Aves Canoras/classificação , Aves Canoras/genética , Migração Animal , Evolução Molecular , Alemanha , Grécia , Haplótipos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Mitocôndrias/genética , Filogenia
13.
PeerJ ; 8: e9385, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32596056

RESUMO

Woodpecker diversity is usually higher in natural forests rich in dead wood and old trees than in managed ones, thus this group of birds is regarded as an indicator of forest biodiversity. Woodpeckers excavate cavities which can be subsequently used by several bird species. As a consequence, their abundance indicates high avian abundance and diversity in forests. However, woodpecker-made holes may be also important for other animals, for example, mammals but it has seldom been investigated so far. Here, we examine how well one species, the Great Spotted Woodpecker, predicts species richness, occurrence and acoustic activity of bats in Polish pine forests. In 2011 we conducted woodpecker and bat surveys at 63 point-count sites in forests that varied in terms of stand age, structure and amount of dead wood. From zero to five Great Spotted Woodpeckers at a point-count site were recorded. The total duration of the echolocation calls during a 10-min visit varied from 0 to 542 s and the number of bat species/species groups recorded during a visit ranged between zero to five. The local abundance of the woodpecker was positively correlated with bat species richness (on the verge of significance), bat occurrence and pooled bat activity. The occurrence of Eptesicus and Vespertilio bats and Nyctalus species was positively related with the abundance of the Great Spotted Woodpecker. The activity of Pipistrellus pygmaeus, Eptesicus and Vespertilio bats and a group of Myotis species was not associated with the woodpecker abundance, but echolocation calls of Nyctalus species, P. nathusii and P.pipistrellus were more often at sites with many Great Spotted Woodpeckers. Moreover, the probability of bat presence and the activity of bats was generally higher shortly after dusk and in middle of the summer than in late spring. We suggest that the observed correlations can be driven by similar roosting habitats (e.g., woodpeckers can provide breeding cavities for bats) or possibly by associated invertebrate food resources of woodpeckers and bats. The abundance of Great Spotted Woodpecker seems to be a good positive indicator of bat species richness, occurrence and activity, thus adding a group of relatively cryptic forest species that are indicated by the presence of the Great Spotted Woodpecker.

14.
J Anim Ecol ; 89(1): 207-220, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30771254

RESUMO

Currently, the deployment of tracking devices is one of the most frequently used approaches to study movement ecology of birds. Recent miniaturization of light-level geolocators enabled studying small bird species whose migratory patterns were widely unknown. However, geolocators may reduce vital rates in tagged birds and may bias obtained movement data. There is a need for a thorough assessment of the potential tag effects on small birds, as previous meta-analyses did not evaluate unpublished data and impact of multiple life-history traits, focused mainly on large species and the number of published studies tagging small birds has increased substantially. We quantitatively reviewed 549 records extracted from 74 published and 48 unpublished studies on over 7,800 tagged and 17,800 control individuals to examine the effects of geolocator tagging on small bird species (body mass <100 g). We calculated the effect of tagging on apparent survival, condition, phenology and breeding performance and identified the most important predictors of the magnitude of effect sizes. Even though the effects were not statistically significant in phylogenetically controlled models, we found a weak negative impact of geolocators on apparent survival. The negative effect on apparent survival was stronger with increasing relative load of the device and with geolocators attached using elastic harnesses. Moreover, tagging effects were stronger in smaller species. In conclusion, we found a weak effect on apparent survival of tagged birds and managed to pinpoint key aspects and drivers of tagging effects. We provide recommendations for establishing matched control group for proper effect size assessment in future studies and outline various aspects of tagging that need further investigation. Finally, our results encourage further use of geolocators on small bird species but the ethical aspects and scientific benefits should always be considered.


Assuntos
Migração Animal , Aves , Animais , Filogenia , Viés de Publicação , Estações do Ano
15.
Ecol Evol ; 9(21): 12291-12301, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31832160

RESUMO

Climate change is profoundly affecting the phenology of many species. In migratory birds, there is evidence for advances in their arrival time at the breeding ground and their timing of breeding, yet empirical studies examining the interdependence between arrival and breeding time are lacking. Hence, evidence is scarce regarding how breeding time may be adjusted via the arrival-breeding interval to help local populations adapt to local conditions or climate change. We used long-term data from an intensively monitored population of the northern wheatear (Oenanthe oenanthe) to examine the factors related to the length of 734 separate arrival-to-breeding events from 549 individual females. From 1993 to 2017, the mean arrival and egg-laying dates advanced by approximately the same amount (~5-6 days), with considerable between-individual variation in the arrival-breeding interval. The arrival-breeding interval was shorter for: (a) individuals that arrived later in the season compared to early-arriving birds, (b) for experienced females compared to first-year breeders, (c) as spring progressed, and (d) in later years compared to earlier ones. The influence of these factors was much larger for birds arriving earlier in the season compared to later arriving birds, with most effects on variation in the arrival-breeding interval being absent in late-arriving birds. Thus, in this population it appears that the timing of breeding is not constrained by arrival for early- to midarriving birds, but instead is dependent on local conditions after arrival. For late-arriving birds, however, the timing of breeding appears to be influenced by arrival constraints. Hence, impacts of climate change on arrival dates and local conditions are expected to vary for different parts of the population, with potential negative impacts associated with these factors likely to differ for early- versus late-arriving birds.

16.
Ecol Evol ; 9(2): 868-879, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30766676

RESUMO

Land use is likely to be a key driver of population dynamics of species inhabiting anthropogenic landscapes, such as farmlands. Understanding the relationships between land use and variation in population growth rates is therefore critical for the management of many farmland species. Using 24 years of data of a declining farmland bird in an integrated population model, we examined how spatiotemporal variation in land use (defined as habitats with "Short" and "Tall" ground vegetation during the breeding season) and habitat-specific demographic parameters relates to variation in population growth taking into account individual movements between habitats. We also evaluated contributions to population growth using transient life table response experiments which gives information on contribution of past variation of parameters and real-time elasticities which suggests future scenarios to change growth rates. LTRE analyses revealed a clear contribution of Short habitats to the annual variation in population growth rate that was mostly due to fledgling recruitment, whereas there was no evidence for a contribution of Tall habitats. Only 18% of the variation in population growth was explained by the modeled local demography, the remaining variation being explained by apparent immigration (i.e., the residual variation). We discuss potential biological and methodological reasons for high contributions of apparent immigration in open populations. In line with LTRE analysis, real-time elasticity analysis revealed that demographic parameters linked to Short habitats had a stronger potential to influence population growth rate than those of Tall habitats. Most particularly, an increase of the proportion of Short sites occupied by Old breeders could have a distinct positive impact on population growth. High-quality Short habitats such as grazed pastures have been declining in southern Sweden. Converting low-quality to high-quality habitats could therefore change the present negative population trend of this, and other species with similar habitat requirements.

17.
Sci Rep ; 8(1): 7004, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29725077

RESUMO

A major task for decision makers is deciding how to consider monetary, cultural and conservation values of biodiversity explicitly when planning sustainable land use. Thus, there is a great need to understand just what "valuing" biodiversity or species really means, e.g. regarding how many and which species are important in providing ecosystem services or other values. Constructing ecosystem-level indices, however, requires weighting the relative contribution of species to the different values. Using farmland birds, we illustrate how species contribute to different biodiversity values, namely utilitarian (pest seed predation potential), cultural (species occurrence in poetry), conservational (declines and rarity) and inherent (all species equal) value. Major contributions to each value are often made by a subset of the community and different species are important for different values, leading to no correlations or, in some cases, negative correlations between species' relative contributions to different values. Our results and methods using relative contributions of species to biodiversity values can aid decisions when weighing different values in policies and strategies for natural resource management. We conclude that acknowledging the importance of the range of biodiversity values that are apparent from different perspectives is critical if the full value of biodiversity to society is to be realised.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/métodos , Tomada de Decisões , Políticas
18.
Ecol Evol ; 7(15): 5632-5644, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28808543

RESUMO

Nonsystematically collected, a.k.a. opportunistic, species observations are accumulating at a high rate in biodiversity databases. Occupancy models have arisen as the main tool to reduce effects of limited knowledge about effort in analyses of opportunistic data. These models are generally using long closure periods (e.g., breeding season) for the estimation of probability of detection and occurrence. Here, we use the fact that multiple opportunistic observations in biodiversity databases may be available even within days (e.g., at popular birding localities) to reduce the closure period to 1 day in order to estimate daily occupancies within the breeding season. We use a hierarchical dynamic occupancy model for daily visits to analyze opportunistic observations of 71 species from nine wetlands during 10 years. Our model derives measures of seasonal site use within seasons from estimates of daily occupancy. Comparing results from our "seasonal site use model" to results from a traditional annual occupancy model (using a closure criterion of 2 months or more) showed that our model provides more detailed biologically relevant information. For example, when the aim is to analyze occurrences of breeding species, an annual occupancy model will over-estimate site use of species with temporary occurrences (e.g., migrants passing by, single itinerary prospecting individuals) as even a single observation during the closure period will be viewed as an occupancy. Alternatively, our model produces estimates of the extent to which sites are actually used. Model validation based on simulated data confirmed that our model is robust to changes and variability in sampling effort and species detectability. We conclude that more information can be gained from opportunistic data with multiple replicates (e.g., several reports per day almost every day) by reducing the time window of the closure criterion to acquire estimates of occupancies within seasons.

19.
Ecology ; 98(8): 2102-2110, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28508394

RESUMO

The seasonal timing of reproduction is a major fitness factor in many organisms. Commonly, individual fitness declines with time in the breeding season. We investigated three suggested but rarely tested hypotheses for this seasonal fitness decline: (1) time per se (date hypothesis), (2) late breeders are of lower quality than early ones (individual quality hypothesis), and (3) late breeders are breeding at poorer territories than early breeders (territory quality hypothesis). We used Bayesian variance component analyses to examine reproductive output (breeding success, number fledged, and number of recruits) from repeated observations of female Northern Wheatears (Oenanthe oenanthe) and individual territories from a 20-yr population study. The major part of the observed seasonal decline in reproductive output seemed to be driven by date-related effects, whereas female age and territory type (i.e., known indicators of temporary quality) contributed to a smaller degree. Other, persistent effects linked to individual and territory identity did not show any clear patterns on the seasonal decline in reproductive output. To better disentangle the quality effects (persistent and temporary) of individual and territory from effects caused by the deterioration of the environment we suggest a protocol combining experimental manipulation of breeding time with a variance-covariance partitioning method used here.


Assuntos
Passeriformes/fisiologia , Reprodução , Animais , Teorema de Bayes , Cruzamento , Feminino , Dinâmica Populacional , Estações do Ano
20.
Proc Biol Sci ; 284(1851)2017 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-28330917

RESUMO

Natal dispersal is assumed to be costly. Such costs can be difficult to detect, and fitness consequences of dispersal are therefore poorly known. Because of lower phenotypic quality and/or familiarity with the environment, natal dispersers may be less buffered against a sudden increase in reproductive effort. Consequently, reproductive costs associated with natal dispersal may mostly be detected in harsh breeding conditions. We tested this prediction by comparing lifetime reproductive success between natal dispersers and non-dispersers in a patchy population of collared flycatchers (Ficedula albicollis) when they reared either a non-manipulated brood or an experimentally increased or decreased brood. Natal dispersers achieved lower lifetime reproductive success than non-dispersers only under more stressful breeding conditions (i.e. when brood size was experimentally increased). This was mostly due to a lower number of recruits produced in the year of the increase. Our results suggest a cost associated with natal dispersal paid immediately after an increase in reproductive effort and not subsequently compensated for through increased survival or future offspring recruitment. Natal dispersers adjusted their breeding investment when reproductive effort is as predicted but seemed unable to efficiently face a sudden increase in effort, which could affect the influence of environmental predictability on dispersal evolution.


Assuntos
Distribuição Animal , Reprodução , Aves Canoras/fisiologia , Animais , Meio Ambiente , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...