Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(20)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36296865

RESUMO

Food packaging manufacturers often resort to lamination, typically with materials which are neither non-biodegradable nor biobased polymers, to confer barrier properties to paper and cardboard. The present work considers a greener solution: enhancing paper's resistance to moisture, grease, and air by aqueous coating suspensions. For hydrophobization, a combined approach between nanocellulose and common esterifying agents was considered, but the water vapor transmission rate (WVTR) remained excessively high for the goal of wrapping moisture-sensitive products (>600 g m−2 d−1). Nonetheless, oil-repellant surfaces were effectively obtained with nanocellulose, illite, sodium alginate, and/or poly(vinyl alcohol) (PVA), reaching Kit ratings up to 11. Regarding air resistance, mineral-rich coatings attained values above 1000 Gurley s. In light of these results, nanocellulose, minerals, PVA, pullulan, alginate, and a non-ionic surfactant were combined for multi-purpose coating formulations. It is hypothesized that these materials decrease porosity while complementing each other's flaws, e.g., PVA succeeds at decreasing porosity but has low dimensional stability. As an example, a suspension mostly constituted by nanocellulose, sizing agents, minerals and PVA yielded a WVTR of roughly 100 g m−2 d−1, a Kit rating of 12, and an air resistance above 300 s/100 mL. This indicates that multi-purpose coatings can be satisfactorily incorporated into paper structures for food packaging applications, although not as the food contact layer.

2.
Nanomaterials (Basel) ; 12(9)2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35564321

RESUMO

The current trends in micro-/nanofibers offer a new and unmissable chance for the recovery of cellulose from non-woody crops. This work assesses a technically feasible approach for the production of micro- and nanofibrillated cellulose (MNFC) from jute, sisal and hemp, involving refining and enzymatic hydrolysis as pretreatments. Regarding the latter, only slight enhancements of nanofibrillation, transparency and specific surface area were recorded when increasing the dose of endoglucanases from 80 to 240 mg/kg. This supports the idea that highly ordered cellulose structures near the fiber wall are resistant to hydrolysis and hinder the diffusion of glucanases. Mechanical MNFC displayed the highest aspect ratio, up to 228 for hemp. Increasing the number of homogenization cycles increased the apparent viscosity in most cases, up to 0.14 Pa·s at 100 s-1 (1 wt.% consistency). A shear-thinning behavior, more marked for MNFC from jute and sisal, was evidenced in all cases. We conclude that, since both the raw material and the pretreatment play a major role, the unique characteristics of non-woody MNFC, either mechanical or enzymatically pretreated (low dose), make it worth considering for large-scale processes.

3.
Polymers (Basel) ; 12(6)2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32604815

RESUMO

This paper describes the potential of using hemp core waste in the composite industry. These lignocellulosic residues can be used to produce environmentally friendly and economically viable composites and improve the overall value chain of hemp production. To this purpose, hemp core residues were alkaline treated at different NaOH concentrations and then mechanically defibrated. Hemp core fibers were mixed with polypropylene and injection molded to obtain testing specimens. The effect of sodium hydroxide on the flexural modulus of composites was studied from macro and micro mechanical viewpoints. Results showed remarkable improvements in the flexural modulus due to the presence of hemp core fibers in the composites. At a 50 wt % of reinforcement content, increments around 239%, 250% and 257% were obtained for composites containing fibers treated at a 5, 7.5 and 10 wt % of NaOH, respectively. These results were comparable to those of wood composites, displaying the potential of hemp core residues. The intrinsic flexural modulus of the hemp core fibers was computed by means of micromechanical analysis and was calculated using the ratios between a fiber flexural modulus factor and a fiber tensile modulus factor. The results agreed with those obtained by using models such as Hirsch and Tsai-Pagano. Other micromechanical parameters were studied to fully understand the contribution of the phases. The relationship between the fibers' intrinsic flexural and Young's moduli was studied, and the differences between properties were attributed to stress distribution and materials' anisotropy.

4.
Polymers (Basel) ; 12(5)2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32392772

RESUMO

Nowadays, the interest on nanofibrillated cellulose (CNF) has increased owing to its sustainability and its capacity to improve mechanical and barrier properties of polymeric films. Moreover, this filler shows some drawbacks related with its high capacity to form aggregates, hindering its dispersion in the matrix. In this work, an improved procedure to optimize the dispersability of CNF in a thermoplastic starch was put forward. On the one hand, CNF needs a hydrophilic dispersant to be included in the matrix, and on the other, starch needs a hydrophilic plasticizer to obtain a thermoformable material. Glycerol was used to fulfil both targets at once. CNF was predispersed in the plasticizer before nanofibrillation and later on was included into starch, obtaining thin films. The tensile strength of these CNF-starch composite films was 60% higher than the plain thermoplastic starch at a very low 0.36% w/w percentage of CNF. The films showed a noticeable correlation between water uptake, and temperature and humidity. Regarding permeability, a ca. 55% oxygen and water vapor permeability drop was found by nanofiller loading. The hydrolytic susceptibility of the composite was confirmed, being similar to that of the thermoplastic starch.

5.
Waste Manag ; 32(10): 1962-7, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22704807

RESUMO

This paper studies the feasibility of incorporating treated lignins in fiberboards made from Vitis vinifera as an agricultural waste. The treated lignins are the purified Kraft lignin and the alkaline hydrolyzed Kraft lignin. V. vinifera raw material and its fibers were characterized in terms of chemical composition and the results were compared to other biomass species. The chemical composition of treated lignins shows that they have high purity compared to the lignin raw material. The lignin-V. vinifera fibreboards were produced on laboratory scale by adding powdered treated lignins to the material that had previously been steam exploded. Some of the important properties of fibreboards prepared using the treated lignins as natural adhesives were evaluated. These properties were density, thickness swelling, water absorption, modulus of elasticity, modulus of rupture, internal bond strength. The explored levels of treated lignins vary from 5% to 20%. The results showed that binderless fibreboards, fibreboards made from V. vinifera fibers and alkaline hydrolyzed Kraft lignin have weaker mechanical properties. However, the fibreboards obtained using purified Kraft lignin have good mechanical and water resistance properties which satisfy the requirements of the relevant standards specifications.


Assuntos
Materiais de Construção , Lignina , Vitis/química , Agricultura , Estudos de Viabilidade , Lignina/isolamento & purificação , Teste de Materiais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...