Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Affect Disord ; 350: 382-387, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38158050

RESUMO

BACKGROUND: The objective was to develop and assess performance of an algorithm predicting suicide-related ICD codes within three months of psychiatric discharge. METHODS: This prognostic study used a retrospective cohort of EHR data from 2789 youth (12 to 20 years old) hospitalized in a safety net institution in the Northeastern United States. The dataset combined structured data with unstructured data obtained through natural language processing of clinical notes. Machine learning approaches compared gradient boosting to random forest analyses. RESULTS: Area under the ROC and precision-recall curve were 0.88 and 0.17, respectively, for the final Gradient Boosting model. The cutoff point of the model-generated predicted probabilities of suicide that optimally classified the individual as high risk or not was 0.009. When applying the chosen cutoff (0.009) to the hold-out testing set, the model correctly identified 8 positive cases out of 10, and 418 negative cases out 548. The corresponding performance metrics showed 80 % sensitivity, 76 % specificity, 6 % PPV, 99 % NPV, F-1 score of 0.11, and an accuracy of 76 %. LIMITATIONS: The data in this study comes from a single health system, possibly introducing bias in the model's algorithm. Thus, the model may have underestimated the incidence of suicidal behavior in the study population. Further research should include multiple system EHRs. CONCLUSIONS: These performance metrics suggest a benefit to including both unstructured and structured data in design of predictive algorithms for suicidal behavior, which can be integrated into psychiatric services to help assess risk.


Assuntos
Alta do Paciente , Ideação Suicida , Adolescente , Criança , Humanos , Adulto Jovem , Algoritmos , Pacientes Internados , Estudos Retrospectivos
2.
Chem Mater ; 35(11): 4149-4158, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37332678

RESUMO

Ni-rich layered oxide cathode materials such as LiNi0.8Mn0.1Co0.1O2 (NMC811) are widely tipped as the next-generation cathodes for lithium-ion batteries. The NMC class offers high capacities but suffers an irreversible first cycle capacity loss, a result of slow Li+ diffusion kinetics at a low state of charge. Understanding the origin of these kinetic hindrances to Li+ mobility inside the cathode is vital to negate the first cycle capacity loss in future materials design. Here, we report on the development of operando muon spectroscopy (µSR) to probe the Å-length scale Li+ ion diffusion in NMC811 during its first cycle and how this can be compared to electrochemical impedance spectroscopy (EIS) and the galvanostatic intermittent titration technique (GITT). Volume-averaged muon implantation enables measurements that are largely unaffected by interface/surface effects, thus providing a specific characterization of the fundamental bulk properties to complement surface-dominated electrochemical methods. First cycle measurements show that the bulk Li+ mobility is less affected than the surface Li+ mobility at full depth of discharge, indicating that sluggish surface diffusion is the likely cause of first cycle irreversible capacity loss. Additionally, we demonstrate that trends in the nuclear field distribution width of the implanted muons during cycling correlate with those observed in differential capacity, suggesting the sensitivity of this µSR parameter to structural changes during cycling.

3.
J Mater Chem A Mater ; 11(24): 13016-13026, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37346739

RESUMO

Short-range ordering in cation-disordered cathodes can have a significant effect on their electrochemical properties. Here, we characterise the cation short-range order in the antiperovskite cathode material Li2FeSO, using density functional theory, Monte Carlo simulations, and synchrotron X-ray pair-distribution-function data. We predict partial short-range cation-ordering, characterised by favourable OLi4Fe2 oxygen coordination with a preference for polar cis-OLi4Fe2 over non-polar trans-OLi4Fe2 configurations. This preference for polar cation configurations produces long-range disorder, in agreement with experimental data. The predicted short-range-order preference contrasts with that for a simple point-charge model, which instead predicts preferential trans-OLi4Fe2 oxygen coordination and corresponding long-range crystallographic order. The absence of long-range order in Li2FeSO can therefore be attributed to the relative stability of cis-OLi4Fe2 and other non-OLi4Fe2 oxygen-coordination motifs. We show that this effect is associated with the polarisation of oxide and sulfide anions in polar coordination environments, which stabilises these polar short-range cation orderings. We propose that similar anion-polarisation-directed short-range-ordering may be present in other heterocationic materials that contain cations with different formal charges. Our analysis illustrates the limitations of using simple point-charge models to predict the structure of cation-disordered materials, where other factors, such as anion polarisation, may play a critical role in directing both short- and long-range structural correlations.

4.
Nanomaterials (Basel) ; 11(12)2021 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-34947716

RESUMO

The impact of several solvent processing additives (1-chloronaphthalene, methylnaphthalene, hexadecane, 1-phenyloctane, and p-anisaldehyde), 3% v/v in o-dichlorobenzene, on the performance and morphology of poly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3‴-di(2-octyldodecyl)-2,2',5',22033,5″,2‴-quaterthiophen-5,5‴-diyl)] (PffBT4T-2OD):[6,6]-phenyl-C71-butyric acid methyl ester (PC71BM)-based polymer solar cells was investigated. Some additives were shown to enhance the power conversion efficiency (PCE) by ~6%, while others decreased the PCE by ~17-25% and a subset of the additives tested completely eliminated any power conversion efficiency and the operation as a photovoltaic device. Grazing-Incidence Wide Angle X-ray Scattering (GIWAXS) revealed a clear stepwise variation in the crystallinity of the systems when changing the additive between the two extreme situations of maximum PCE (1-chloronaphthalene) and null PCE (hexadecane). Small-Angle Neutron Scattering (SANS) revealed that the morphology of devices with PCE ~0% was composed of large domains with correlation lengths of ~30 nm, i.e., much larger than the typical exciton diffusion length (~12 nm) in organic semiconductors. The graded variations in crystallinity and in nano-domain size observed between the two extreme situations (1-chloronaphthalene and hexadecane) were responsible for the observed graded variations in device performance.

5.
ACS Appl Mater Interfaces ; 11(14): 13803-13811, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30880381

RESUMO

Doping poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is known to improve its conductivity; however, little is known about the thin-film structure of PEDOT:PSS when doped with an asymmetrically charged dopant. In this study, PEDOT:PSS was doped with different concentrations of the zwitterion 3-( N, N dimethylmyristylammonio)propanesulfonate (DYMAP), and its effect on the bulk structure of the films was characterized by neutron reflectivity. The results show that at a low doping concentration, the film separates into a quasi-bilayer structure with lower roughness (10%), increased thickness (18%), and lower electrical conductivity compared to the undoped sample. However, when the doping concentration increases, the film forms into a homogeneous layer and experiences an enhanced conductivity by more than an order of magnitude, a 20% smoother surface, and a 60% thickness increase relative to the pristine sample. Atomic force microscopy (AFM) and profilometry measurements confirmed these findings, and the AFM height and phase images showed the gradually increasing presence of DYMAP on the film surface as a function of the concentration. Neutron reflectivity also showed that the quasi-bilayer structure of the lowest concentration-doped PEDOT:PSS is separated by a graded rather than a well-defined interface. Our findings provide an understanding of the layer structure modification for doped PEDOT:PSS films which should prove important for device applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...