Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ind Eng Chem Res ; 61(40): 14837-14846, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36254199

RESUMO

We performed H-cell and flow cell experiments to study the electrochemical reduction of CO2 to oxalic acid (OA) on a lead (Pb) cathode in various nonaqueous solvents. The effects of anolyte, catholyte, supporting electrolyte, temperature, water content, and cathode potential on the Faraday efficiency (FE), current density (CD), and product concentration were investigated. We show that a high FE for OA can be achieved (up to 90%) at a cathode potential of -2.5 V vs Ag/AgCl but at relatively low CDs (10-20 mA/cm2). The FE of OA decreases significantly with increasing water content of the catholyte, which causes byproduct formation (e.g., formate, glycolic acid, and glyoxylic acid). A process design and techno-economic evaluation of the electrochemical conversion of CO2 to OA is presented. The results show that the electrochemical route for OA production can compete with the fossil-fuel based route for the base case scenario (CD of 100 mA/cm2, OA FE of 80%, cell voltage of 4 V, electrolyzer CAPEX of $20000/m2, electricity price of $30/MWh, and OA price of $1000/ton). A sensitivity analysis shows that the market price of OA has a huge influence on the economics. A market price of at least $700/ton is required to have a positive net present value and a payback time of less than 10 years. The performance and economics of the process can be further improved by increasing the CD and FE of OA by using gas diffusion electrodes and eliminating water from the cathode, lowering the cell voltage by increasing the conductivity of the electrolyte solutions, and developing better OA separation methods.

2.
J Phys Chem B ; 126(19): 3572-3584, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35507866

RESUMO

Recently, deep eutectic solvents (DES) have been considered as possible electrolytes for the electrochemical reduction of CO2 to value-added products such as formic and oxalic acids. The applicability of pure DES as electrolytes is hindered by high viscosities. Mixtures of DES with organic solvents can be a promising way of designing superior electrolytes by exploiting the advantages of each solvent type. In this study, densities, viscosities, diffusivities, and ionic conductivities of mixed solvents comprising DES (i.e., reline and ethaline), methanol, and propylene carbonate were computed using molecular simulations. To provide a quantitative assessment of the affinity and mass transport of CO2 and oxalic and formic acids in the mixed solvents, the solubilities and self-diffusivities of these solutes were also computed. Our results show that the addition of DES to the organic solvents enhances the solubilities of oxalic and formic acids, while the solubility of CO2 in the ethaline-containing mixtures are in the same order of magnitude with the respective pure organic components. A monotonic increase in the densities and viscosities of the mixed solvents is observed as the mole fraction of DES in the mixture increases, with the exception of the density of ethaline-propylene carbonate which shows the opposite behavior due to the high viscosity of the pure organic component. The self-diffusivities of all species in the mixtures significantly decrease as the mole fraction of DES approaches unity. Similarly, the self-diffusivities of the dissolved CO2 and the oxalic and formic acids also decrease by at least 1 order of magnitude as the composition of the mixture shifts from the pure organic component to pure DES. The computed ionic conductivities of all mixed solvents show a maximum value for mole fractions of DES in the range from 0.2 to 0.6 and decrease as more DES is added to the mixtures. Since for most mixtures studied here no prior experimental measurements exist, our findings can serve as a first data set based on which further investigation of DES-containing electrolyte solutions can be performed for the electrochemical reduction of CO2 to useful chemicals.

3.
J Am Chem Soc ; 139(45): 16412-16419, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29064691

RESUMO

The complexity of the electrocatalytic reduction of CO to CH4 and C2H4 on copper electrodes prevents a straightforward elucidation of the reaction mechanism and the design of new and better catalysts. Although structural and electrolyte effects have been separately studied, there are no reports on structure-sensitive cation effects on the catalyst's selectivity over a wide potential range. Therefore, we investigated CO reduction on Cu(100), Cu(111), and Cu(polycrystalline) electrodes in 0.1 M alkaline hydroxide electrolytes (LiOH, NaOH, KOH, RbOH, CsOH) between 0 and -1.5 V vs RHE. We used online electrochemical mass spectrometry and high-performance liquid chromatography to determine the product distribution as a function of electrode structure, cation size, and applied potential. First, cation effects are potential dependent, as larger cations increase the selectivity of all electrodes toward ethylene at E > -0.45 V vs RHE, but methane is favored at more negative potentials. Second, cation effects are structure-sensitive, as the onset potential for C2H4 formation depends on the electrode structure and cation size, whereas that for CH4 does not. Fourier Transform infrared spectroscopy (FTIR) and density functional theory help to understand how cations favor ethylene over methane at low overpotentials on Cu(100). The rate-determining step to methane and ethylene formation is CO hydrogenation, which is considerably easier in the presence of alkaline cations for a CO dimer compared to a CO monomer. For Li+ and Na+, the stabilization is such that hydrogenated dimers are observable with FTIR at low overpotentials. Thus, potential-dependent, structure-sensitive cation effects help steer the selectivity toward specific products.

4.
Inorg Chem ; 56(9): 4818-4828, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28406644

RESUMO

Ruthenium polypyridyl complexes are good candidates for photoactivated chemotherapy (PACT) provided that they are stable in the dark but efficiently photosubstitute one of their ligands. Here the use of the natural amino acid l-proline as a protecting ligand for ruthenium-based PACT compounds is investigated in the series of complexes Λ-[Ru(bpy)2(l-prol)]PF6 ([1a]PF6; bpy = 2,2'-bipyridine and l-prol = l-proline), Λ-[Ru(bpy)(dmbpy)(l-prol)]PF6 ([2a]PF6 and [2b]PF6; dmbpy = 6,6'-dimethyl-2,2'-bipyridine), and Λ-[Ru(dmbpy)2(l-prol)]PF6 ([3a]PF6). The synthesis of the tris-heteroleptic complex bearing the dissymmetric proline ligand yielded only two of the four possible regioisomers, called [2a]PF6 and [2b]PF6. Both isomers were isolated and characterized by a combination of spectroscopy and density functional theory calculations. The photoreactivity of all four complexes [1a]PF6, [2a]PF6, [2b]PF6, and [3a]PF6 was studied in water (H2O) and acetonitrile (MeCN) using UV-vis spectroscopy, circular dichroism spectroscopy, mass spectrometry, and 1H NMR spectroscopy. In H2O, upon visible-light irradiation in the presence of oxygen, no photosubstitution took place, but the amine of complex [1a]PF6 was photooxidized to an imine. Contrary to expectations, enhancing the steric strain by the addition of two ([2b]PF6) or four ([3a]PF6) methyl substituents did not lead, in phosphate-buffered saline (PBS), to ligand photosubstitution. However, it prevented photoxidation, probably as a consequence of the electron-donating effect of the methyl substituents. In addition, whereas [2b]PF6 was photostable in PBS, [2a]PF6 quantitatively isomerized to [2b]PF6 upon light irradiation. In pure MeCN, [2a]PF6 and [3a]PF6 showed non-selective photosubstitution of both the l-proline and dmbpy ligands, whereas the non-strained complex [1a]PF6 was photostable. Finally, in H2O-MeCN mixtures, [3a]PF6 showed selective photosubstitution of l-proline, thus demonstrating the active role played by the solvent on the photoreactivity of this series of complexes. The role of the solvent polarity and coordination properties on the photochemical properties of polypyridyl complexes is discussed.

5.
Angew Chem Int Ed Engl ; 56(13): 3621-3624, 2017 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-28230297

RESUMO

Carbon dioxide and carbon monoxide can be electrochemically reduced to useful products such as ethylene and ethanol on copper electrocatalysts. The process is yet to be optimized and the exact mechanism and the corresponding reaction intermediates are under debate or unknown. In particular, it has been hypothesized that the C-C bond formation proceeds via CO dimerization and further hydrogenation. Although computational support for this hypothesis exists, direct experimental evidence has been elusive. In this work, we detect a hydrogenated dimer intermediate (OCCOH) using Fourier transform infrared spectroscopy at low overpotentials in LiOH solutions. Density functional theory calculations support our assignment of the observed vibrational bands. The formation of this intermediate is structure sensitive, as it is observed only during CO reduction on Cu(100) and not on Cu(111), in agreement with previous experimental and computational observations.

6.
J Am Chem Soc ; 134(24): 9864-7, 2012 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-22670713

RESUMO

Carbon monoxide is a key intermediate in the electrochemical reduction of carbon dioxide to methane and ethylene on copper electrodes. We investigated the electrochemical reduction of CO on two single-crystal copper electrodes and observed two different reaction mechanisms for ethylene formation: one pathway has a common intermediate with the formation of methane and takes place preferentially at (111) facets or steps, and the other pathway involves selective reduction of CO to ethylene at relatively low overpotentials at (100) facets. The (100) facets seem to be the dominant crystal facets in polycrystalline copper, opening up new routes to affordable (photo)electrochemical production of hydrocarbons from CO(2).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...