Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 223(Pt A): 1368-1380, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36395941

RESUMO

The complexation between two oppositely charged polyelectrolytes (PE) can lead liquid-liquid (complex coacervates, CC) or liquid-solid (solid precipitates, SP) phase separations. Herein, the effect of pH (2-11) and ionic strength (I, 0.05-1.0 M KCl) on the associative interactions between chitosan (QL)-alginate (SA) and QL-Pectin (Pec), polysaccharides widely used in biotechnology field, is described. pH and I, exhibited significant effect on the structure and phase transitions by modifying the ionization degree (α), pka, and associative interactions between PE. Onset of binding was established at pHc 9, while continued acidification (pHτ 5.8) led to simultaneous CC and SP exhibiting a maximum turbidity in both systems. At pHδ 4.0, QL-Pec showed preferably CC structures whereas QL-SA maintained the CC and SP structures. At pHω 2, the associative interactions were suppressed due to the low ionization of Pec and SA. I (1.0 M) significantly diminished the interactions in QL-Pec due to charge screening. Molecular weight, second virial coefficient, hydrodynamic size, ionizable groups, and persistence length of polyion, influenced on the phase behavior of QL-Pec and QL-SA systems. Therefore, CC and SP are found simultaneously in both systems, their transitions can be modulated by intrinsic and environmental conditions, expanding the functional properties of complexed polysaccharides.


Assuntos
Quitosana , Quitosana/química , Alginatos/química , Pectinas , Concentração de Íons de Hidrogênio , Polieletrólitos/química , Polissacarídeos
2.
Int J Biol Macromol ; 145: 207-215, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31874264

RESUMO

Tamarind seed mucilage (TSM) was evaluated as a novel wall material for microencapsulation of sesame oil (SO) by spray-drying method. Wall material:core ratios of 1:1 (M1) and 1:2 (M2) were considered, and the corresponding physical and flow properties, thermal stability, functional groups composition, morphology, encapsulation efficiency, and oxidative stability were evaluated. Powder of M1 and M2 microcapsules exhibited free-flowing characteristics. The particle size distribution for M1 microcapsules was monomodal with diameter in the range 1-50 µm. In contrast, Microcapsules M2 presented a bimodal distribution with diameter in the ranges 1-50 µm and 50-125 µm. M1 microcapsules were thermally stable until 227 °C and microcapsules M2 until 178 °C. Microcapsules M1 and M2 exhibited a dominant amorphous halo and external morphology almost spherical in shape. Encapsulation efficiency was 91.05% for M1 and 81.22% for M2. Peroxide formation reached values after six weeks was 14.65 and 16.51 mEq/kgOil for M1 and M2 respectively. Overall, the results led to the conclusion that tamarind mucilage is a viable material for high microencapsulation efficiency, while offering protection against oxidation mechanisms of SO.


Assuntos
Gorduras na Dieta/análise , Composição de Medicamentos/métodos , Mucilagem Vegetal/química , Óleo de Gergelim/análise , Sesamum/química , Tamarindus/química , Cápsulas/química , Humanos , Oxirredução , Tamanho da Partícula , Peróxidos/química , Sementes/química
3.
Food Res Int ; 116: 1010-1019, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30716883

RESUMO

Lemon essential oil (LEO) emulsions were prepared using mesquite gum (MG) - chia mucilage (CM) mixtures (90-10 and 80-20 MG-CM weight ratios) and MG as control sample, LEO emulsions were thenspray dried for obtaining the respective microcapsules.LEO emulsions were analyzed by mean droplet size and apparent viscosity, while microcapsules were characterized through mean particle size, morphology, volatile oil retention (≤51.5%), encapsulation efficiency (≥96.9%), as well asoxidation and release kinetics of LEO. TheLEO oxidation kinetics showed that 90-10 and 80-20MG-CM microcapsules displayed maximum peroxide values of 91.6 and 90.5 meq hydroperoxides kg-1 of oil, respectively, without significant differences between them (p > .05).MG-CM microcapsules provided better protection to LEO against oxidation than those formed with MG; where the oxidation kinetics were well adjusted to zero-order (r2 ≥ 0.94).The LEO release kinetics from microcapsules were carried out at differentpH (2.5 and 6.5) and temperature (37 °C and 65 °C) and four mathematical models (zero-order, first-order, Higuchi and Peppas) were used to evaluate the experimental data; the release kinetics indicated that the 80-20 MG-CM microcapsules had a longer delay in LEO release rate, followed by 90-10 MG-CM and MG microcapsules, hence, CM addition in MG-CM microcapsules contributed to delay the LEO release rate. This work clearly demonstrates that use of a relatively small amount of CM mixed with MGimproves oxidative stability and delays the release rate of encapsulated LEO regarding MG microcapsules, therefore, MG-CM mixtures are interesting additives systems suitable for being applied in food industry.


Assuntos
Antioxidantes/química , Gomas Vegetais/química , Mucilagem Vegetal/química , Óleos de Plantas/química , Prosopis/química , Salvia , Antioxidantes/isolamento & purificação , Emulsões , Manipulação de Alimentos , Cinética , Oxirredução , Tamanho da Partícula , Mucilagem Vegetal/isolamento & purificação , Salvia/química , Sementes , Solubilidade , Viscosidade
4.
Carbohydr Polym ; 192: 84-94, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29691038

RESUMO

Chitosan, sodium alginate and gel of Aloe vera (Aloe barbadensis Miller) were employed for the preparation of polyelectrolyte complexes at pH 4 and 6. FT-IR spectroscopy analysis showed evidence on complexes formation and incorporation of the Aloe vera gel. The ζ potential determination of the polyelectrolyte complexes revealed the presence of surface charges in the range of -20 to -24 mV, which results in stable systems. The dynamic moduli exhibited a high dependence on angular frequency, which is commonly found in solutions of macromolecules. The materials showed human fibroblast and lymphocyte viabilities up to 90% in agreement with null cytotoxicity. The polyelectrolyte complexes at pH 6 with Ca2+ were stable, showed high water absorption, satisfactory morphology, pore size and rigidity, characteristics that allowed significant human fibroblast migration in wound closure in vitro assays.


Assuntos
Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Fibroblastos/citologia , Linfócitos/citologia , Polieletrólitos/química , Polieletrólitos/farmacologia , Alginatos/química , Aloe/química , Quitosana/química , Fibroblastos/efeitos dos fármacos , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Humanos , Linfócitos/efeitos dos fármacos , Reologia
5.
Int J Biol Macromol ; 107(Pt A): 817-824, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28928066

RESUMO

Tamarind seed mucilage (TSM) was extracted and obtained by spray drying. The power law model well described the rheological behavior of the TSM dispersions with determination coefficients R2 higher than 0.93. According to power law model, non-Newtonian shear thinning behavior was observed at all concentrations (0.5%, 1%, 1.5% and 2%) and temperatures (25, 30, 40, and 60°C) studied. Increasing temperature decreased the viscosity and increased the flow behavior index, opposite effect was observed when increasing the concentration. The temperature effect was more pronounced at 2.0% TSM concentration with an activation energy of 20.25kJ/mol. A clear dependence of viscosity on pH was observed, as pH increased from acidic to alkaline conditions, the viscosity increased. It was found that the rheological properties of TSM were affected by the sucrose and salts and their concentrations as well due to the addition of ions (or sucrose) decreases repulsion and allows molecule expansion promoting a significant reduction in viscosity. These results suggest that TMS could be applied in the production of foods that require additives with thickening capacity.


Assuntos
Coloides/química , Sementes/química , Sacarose/química , Tamarindus/química , Coloides/isolamento & purificação , Concentração de Íons de Hidrogênio , Reologia , Sacarose/isolamento & purificação , Temperatura
6.
J Food Sci ; 83(1): 113-121, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29205348

RESUMO

In this work the physicochemical and functional properties of mesquite gum (MG) and nopal mucilage (NM) mixtures (75-25, 50-50, 25-75) were evaluated and compared with those of the individual biopolymers. MG-NM mixtures exhibited more negative zeta potential (ZP) values than those displayed by MG and NM, with 75-25 MG-NM showing the most negative value (-14.92 mV at pH = 7.0), indicative that this biopolymer mixture had the highest electrostatic stability in aqueous dispersions. Viscosity curves and strain amplitude sweep of aqueous dispersions (30% w/w) of the individual gums and their mixtures revealed that all exhibited shear thinning behavior, with NM having higher viscosity than MG, and all displaying fluid-like viscoelastic behavior where the loss modulus predominated over the storage modulus (G″>G'). Differential Scanning Calorimetry revealed that MG, NM, and MG-NM mixtures were thermally stable with decomposition peaks in a range from 303.1 to 319.6 °C. From the functional properties viewpoint, MG (98.4 ± 0.7%) had better emulsifying capacity than NM (51.9 ± 2.0%), while NM (43.0 ± 1.4%) had better foaming capacity than MG. MG-NM mixtures acquired additional functional properties (emulsifying and foaming) regarding the individual biopolymers. Therefore, MG-NM mixtures represent interesting alternatives for their application as emulsifying and foaming agents in food formulations. PRACTICAL APPLICATION: Mesquite gum (MG) and nopal mucilage (NM) are promising raw materials with excellent functional properties whose use has been largely neglected by the food industry. This work demonstrates MG-NM mixtures acquired additional functional properties regarding the individual biopolymers, making these mixtures multifunctional ingredients for the food industry.


Assuntos
Fenômenos Químicos , Gomas Vegetais/química , Mucilagem Vegetal/química , Prosopis/química , Emulsões , Tamanho da Partícula , Reologia , Viscosidade
7.
J Microencapsul ; 34(4): 395-407, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28581875

RESUMO

Mesquite gum (MG) and nopal mucilage (NM) mixtures were used for microencapsulation of lemon essential oil (LEO) by spray drying. Emulsions of MG, NM and MG-NM mixtures (25-75, 50-50, 75-25) were evaluated according to the droplet size (1.49-9.16 µm), viscosity and zeta potential (-16.07 to -20.13 mV), and microcapsules were characterised in particle size (11.9-44.4 µm), morphology, volatile oil retention (VOR) (45.9-74.4%), encapsulation efficiency (EE) (70.9-90.6%), oxidative stability and thermal analysis. The higher concentration of MG led to smaller droplet sizes and lower viscosity in the emulsions, and smaller particle sizes with the highest VOR in microcapsules. The higher concentration of NM induced to higher viscosity in the emulsions, and larger particle sizes with the highest values of EE and oxidative stability in microcapsules. This work shows evidence that MG-NM mixtures can have synergic effect in desirable characteristics such as retention and shelf life extension of LEO in microcapsules.


Assuntos
Citrus/química , Composição de Medicamentos , Óleos Voláteis/química , Gomas Vegetais/química , Mucilagem Vegetal/química , Prosopis/química , Cápsulas , Dessecação , Emulsões
8.
Carbohydr Polym ; 121: 411-9, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25659716

RESUMO

Freeze-dried chia mucilage adsorption isotherms were determined at 25, 35 and 40°C and fitted with the Guggenheim-Anderson-de Boer model. The integral thermodynamic properties (enthalpy and entropy) were estimated with the Clausius-Clapeyron equation. Pore radius of the mucilage, calculated with the Kelvin equation, varied from 0.87 to 6.44 nm in the temperature range studied. The point of maximum stability (minimum integral entropy) ranged between 7.56 and 7.63kg H2O per 100 kg of dry solids (d.s.) (water activity of 0.34-0.53). Enthalpy-entropy compensation for the mucilage showed two isokinetic temperatures: (i) one occurring at low moisture contents (0-7.56 kg H2O per 100 kg d.s.), controlled by changes in water entropy; and (ii) another happening in the moisture interval of 7.56-24 kg H2O per 100 kg d.s. and was enthalpy driven. The glass transition temperature Tg of the mucilage fluctuated between 42.93 and 57.93°C.


Assuntos
Mucilagem Vegetal/química , Salvia/química , Vitrificação , Sementes/química , Temperatura de Transição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...