Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 59(17): 12111-12121, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32806009

RESUMO

The potential of the perovskite system Nd1-xSrxCoO3-δ (x = 1/3 and 2/3) as cathode material for solid oxide fuel cells (SOFCs) has been investigated via detailed structural, electrical, and electrochemical characterization. The average structure of x = 1/3 is orthorhombic with a complex microstructure consisting of intergrown, adjacent, perpendicularly oriented domains. This orthorhombic symmetry remains throughout the temperature range 373-1073 K, as observed by neutron powder diffraction. A higher Sr content of x = 2/3 leads to stabilization of the cubic perovskite with a homogeneous microstructure and with a higher oxygen vacancy content and cobalt oxidation state than the orthorhombic phase at SOFC operation temperature. Both materials are p-type electronic conductors with high total conductivities of 690 and 1675 S·cm-1 at 473 K in air for x = 1/3 and 2/3, respectively. Under working conditions, both compounds exhibit similar electronic conductivities, since x = 2/3 loses more oxygen on heating than x = 1/3, associated with a greater loss of p-type charger carriers. However, composite cathodes prepared with Nd1/3Sr2/3CoO3-δ and Ce0.8Gd0.2O2-δ present lower ASR values (0.10 Ω·cm2 at 973 K in air) than composites prepared with Nd2/3Sr1/3CoO3-δ and Ce0.8Gd0.2O2-δ (0.34 Ω·cm2). The high activity for the oxygen electrochemical reaction at intermediate temperatures is likely attributable to a large disordered oxygen-vacancy concentration, resulting in a very promising SOFC cathode for real devices.

2.
ACS Appl Mater Interfaces ; 12(21): 24209-24217, 2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32368891

RESUMO

Architected Cu/reduced graphene oxide (rGO) heterostructures are achieved by electrodepositing copper on filament-printed rGO scaffolds. The Cu coating perfectly contours the printed rGO structure, but isolated Cu particles also permeate inside the filaments. Although the Cu deposition conveys a certain mass augment, the three-dimensional (3D) structures remain reasonably light (bulk density ≅ 0.42 g·cm-3). The electrical conductivity (σe) of the Cu/rGO structure (∼8 × 104 S·m-1) shows a notable increment compared to σe of the rGO structure (∼2 × 102 S·m-1). The effect on the scaffold robustness is also notable with an increase of the compressive strength by nearly 10 times (from 20 kPa of the rGO scaffold to 150 kPa of the Cu/rGO structure) and cyclability as well. The improved thermal conductivity of the Cu-coated scaffolds (∼4 times higher), in addition to the σe and strength improvements, suggests that 3D Cu/rGO structures could be suitable assemblies for integration into thermal dissipation systems, particularly as thermal interface materials, for compact electronic devices.

3.
ACS Appl Mater Interfaces ; 12(9): 10571-10578, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32058683

RESUMO

The potential of interactive layers of mixed-conducting oxides for improving the performance of air electrodes of solid oxide cells in the intermediate-temperature range is demonstrated. Active layers of Ce0.9Gd0.1O2-δ (CGO), Ce0.8Pr0.2O2-δ (CPO), and SrFe0.9Mo0.1O3-δ (SFM) with thickness in the range 200-400 nm are deposited on CGO-based electrolyte by spray pyrolysis, followed by deposition of a SFM/CGO composite air electrode by painting. The morphologies and phase composition of the active layers are examined by X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy microanalysis. The electrochemical performance of the electrolyte-electrode assemblies is determined by impedance spectroscopy in the range 600-800 °C. Significant improvements in the performance of the electrode process and the geometrically normalized ohmic conductance are observed for the assembly with a CPO active layer with mixed-oxide-ionic-electronic conductivity, especially in the low-temperature range, attributable to extension of the surface path of the electrochemical reactions. The CGO intermediate layer also improves performance but to a lesser degree, most likely due to better ionic-current collection in comparison to the assemblies with either SFM as the active layer or no active layer.

4.
Inorg Chem ; 57(23): 15023-15033, 2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30444118

RESUMO

The BaZr0.7Ce0.2Y0.1O3-δ-BaPrO3-δ perovskite system, of interest for high-temperature electrochemical applications involving mixed protonic-electronic conductivity, forms a solid-solution with a wide interval of Ba substoichiometry in the range Ba(Ce0.2Zr0.7)1- xPr xY0.1O3-δ, 0 ≤ x ≤ 1. Structural phase transitions mapped as a function of temperature and composition by high-resolution neutron powder diffraction and synchrotron X-ray diffraction reveal higher symmetry for lower Pr content and higher temperatures, with the largest stability field observed for rhombohedral symmetry (space group, R3̅ c). Rietveld refinement, supported by magnetic-susceptibility measurements, indicates that partitioning of the B-site cations over the A and B perovskite sites compensates Ba substoichiometry in preference to A-site vacancy formation and that multiple cations are distributed over both sites. Electron-hole transport dominates electrical conductivity in both wet and dry oxidizing conditions, with total conductivity reaching a value of ∼0.5 S cm-1 for the x = 1 end-member in dry air at 1173 K. Higher electrical conductivity and the displacement of oxygen loss to higher temperatures with increasing Pr content both reflect the role of Pr in promoting hole formation at the expense of oxygen vacancies. In more reducing conditions (N2) and at low Pr contents, conductivity is higher in humidified atmospheres (∼0.023 atm pH2O) indicating a protonic contribution to transport, whereas the greater electron-hole conductivity with increasing Pr content results in lower conductivity in humidified N2 due to the creation of protonic defects and the consumption of holes.

5.
Inorg Chem ; 56(15): 9120-9131, 2017 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-28742340

RESUMO

Members of the perovskite solid solution BaZr1-xPrxO3-δ (0.2 ≤ x ≤ 0.8) with potential high-temperature electrochemical applications were synthesized via mechanical activation and high-temperature annealing at 1250 °C. Structural properties were examined by Rietveld analysis of neutron powder diffraction and Raman spectroscopy at room temperature, indicating rhombohedral symmetry (space group R3̅c) for members x = 0.2 and 0.4 and orthorhombic symmetry (Imma) for x = 0.6 and 0.8. The sequence of phase transitions for the complete solid solution from BaZrO3 to BaPrO3 is Pm3̅m → R3̅c → Imma → Pnma. The structural data indicate that Pr principally exists as Pr4+ on the B site and that oxygen content increases with higher Pr content. Electrical-conductivity measurements in the temperature range of 250-900 °C in dry and humidified (pH2O ≈ 0.03 atm) N2 and O2 atmospheres revealed an increase of total conductivity by over 2 orders of magnitude in dry conditions from x = 0.2 to x = 0.8 (σ ≈ 0.08 S cm-1 at 920 °C in dry O2 for x = 0.8). The conductivity for Pr contents x > 0.2 is attributable to positively charged electronic carriers, whereas for x = 0.2 transport in dry conditions is n-type. The change in conduction mechanism with composition is proposed to arise from the compensation regime for minor amounts of BaO loss changing from predominantly partitioning of Pr on the A site to vacancy formation with increasing Pr content. Conductivity is lower in wet conditions for x > 0.2 indicating that the positive defects are, to a large extent, charge compensated by less mobile protonic species. In contrast, the transport mechanism of the Zr-rich composition (x = 0.2), with much lower electronic conductivity, is essentially independent of moisture content.

6.
Phys Chem Chem Phys ; 17(17): 11527-39, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25857870

RESUMO

The current work demonstrates how tailoring the transport properties of thin ceria-based buffer layers in solid oxide fuel or electrolyser cells can provide the necessary phase stability against chemical interaction at the electrolyte/electrode interface, while also providing radical improvements in the electrochemical performance of the oxygen electrode. Half cells of Ce0.8R0.2O2-δ + 2 mol% Co buffer layers (where R = Gd, Pr) with Nd2NiO4+δ electrodes were fabricated by spin coating on dense YSZ electrolyte supports. Dramatic decreases in polarization resistance, Rp, of up to an order of magnitude, could be achieved in the order, Pr ≪ Gd < no buffer layer. The current article shows how this improvement can be related to increased levels of ambipolar conductivity in the mixed conducting buffer layer, which provides an additional parallel path for electrochemical reaction. This is an important breakthrough as it shows how electrode polarization resistance can be substantially improved, in otherwise identical electrochemical cells, solely by tailoring the transport properties of thin intermediate buffer layers.

7.
Dalton Trans ; 44(16): 7643-53, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25811695

RESUMO

A solid solution forms for Sr3NdNb(3-x)Ti(x)O(12-δ) with approximate limits 0 ≤ x ≤ 0.06. The system crystallizes with a 12R-type hexagonal perovskite structure in the space group R3, as determined by neutron diffraction and selected area electron diffraction. The electrical properties of the end members have been investigated by impedance spectroscopy in the temperature range 550-800 °C under various gas atmospheres and as a function of oxygen and water-vapour partial pressure. Proton transport dominates under wet oxidising conditions in the temperature range 550-700 °C, as confirmed by the H(+)/D(+) isotope effect. Acceptor doping considerably enhances proton conductivity with a value of 3.3 × 10(-6) S cm(-1) for the bulk response of x = 0.06 at 700 °C in moistened air. The presence of a -» slope for both doped and undoped samples in the range 10(-19) ≤ pO2 ≤ 10(-8) atm at 900 °C indicates n-type transport under reducing conditions following the extrinsic model attributable to acceptor centres. The conductivity is essentially independent of pO2 at 600 °C under dry oxidising conditions, consistent with oxide-ion transport; a positive power-law dependence at higher temperature indicates extrinsic behaviour and a significant electron-hole contribution. The dielectric constant at RT of nominally stoichiometric Sr3NdNb3O12 is εr ∼ 37, with a moderately high quality factor of Q × f ∼ 16,400 GHz at fr ∼ 6.4 GHz. The temperature coefficient of resonant frequency of x = 0 is τf ∼ 12 ppm °C(-1), which lowers to -3 ppm °C(-1) for the Ti-doped phase x = 0.06.


Assuntos
Compostos de Cálcio/química , Óxidos/química , Titânio/química , Cristalografia por Raios X , Espectroscopia Dielétrica , Condutividade Elétrica , Microscopia Eletrônica de Transmissão , Conformação Molecular , Neodímio/química , Nióbio/química , Estrôncio/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...