Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Hum Neurosci ; 18: 1411849, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39246712

RESUMO

Metropolitan Mexico City (MMC) children and young adults exhibit overlapping Alzheimer and Parkinsons' diseases (AD, PD) and TAR DNA-binding protein 43 pathology with magnetic ultrafine particulate matter (UFPM) and industrial nanoparticles (NPs). We studied magnetophoresis, electron microscopy and energy-dispersive X-ray spectrometry in 203 brain samples from 14 children, 27 adults, and 27 ALS cases/controls. Saturation isothermal remanent magnetization (SIRM), capturing magnetically unstable FeNPs ~ 20nm, was higher in caudate, thalamus, hippocampus, putamen, and motor regions with subcortical vs. cortical higher SIRM in MMC ≤ 40y. Motion behavior was associated with magnetic exposures 25-100 mT and children exhibited IRM saturated curves at 50-300 mT associated to change in NPs position and/or orientation in situ. Targeted magnetic profiles moving under AC/AD magnetic fields could distinguish ALS vs. controls. Motor neuron magnetic NPs accumulation potentially interferes with action potentials, ion channels, nuclear pores and enhances the membrane insertion process when coated with lipopolysaccharides. TEM and EDX showed 7-20 nm NP Fe, Ti, Co, Ni, V, Hg, W, Al, Zn, Ag, Si, S, Br, Ce, La, and Pr in abnormal neural and vascular organelles. Brain accumulation of magnetic unstable particles start in childhood and cytotoxic, hyperthermia, free radical formation, and NPs motion associated to 30-50 µT (DC magnetic fields) are critical given ubiquitous electric and magnetic fields exposures could induce motion behavior and neural damage. Magnetic UFPM/NPs are a fatal brain cargo in children's brains, and a preventable AD, PD, FTLD, ALS environmental threat. Billions of people are at risk. We are clearly poisoning ourselves.

2.
Dose Response ; 20(3): 15593258221120485, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36158743

RESUMO

Phytochemicals (Pch) present in fruits, vegetables and other foods, are known to inhibit or induce drug metabolism and transport. An exhaustive search was performed in five databases covering from 2000 to 2021. Twenty-one compounds from plants were found to modulate CYP3A and/or P-gp activities and modified the pharmacokinetics and the therapeutic effect of 27 different drugs. Flavonols, flavanones, flavones, stilbenes, diferuloylmethanes, tannins, protoalkaloids, flavans, hyperforin and terpenes, reduce plasma concentration of cyclosporine, simvastatin, celiprolol, midazolam, saquinavir, buspirone, everolimus, nadolol, tamoxifen, alprazolam, verapamil, quazepam, digoxin, fexofenadine, theophylline, indinavir, clopidogrel. Anthocyanins, flavonols, flavones, flavanones, flavonoid glycosides, stilbenes, diferuloylmethanes, catechin, hyperforin, alkaloids, terpenes, tannins and protoalkaloids increase of plasma concentration of buspirone, losartan, diltiazem, felodipine, midazolam, cyclosporine, triazolam, verapamil, carbamazepine, diltiazem, aripiprazole, tamoxifen, doxorubicin, paclitaxel, nicardipine. Interactions between Pchs and drugs affect the gene expression and enzymatic activity of CYP3A and P-gp transporter, which has an impact on their bioavailability; such that co-administration of drugs with food, beverages and food supplements can cause a subtherapeutic effect or overdose. Therefore, it is important for the clinician to consider these interactions to obtain a better therapeutic effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA