Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 12(7): e0180409, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28719635

RESUMO

The abuse of anabolic androgenic steroids (AAS) has been considered a major public health problem during decades. Supraphysiological doses of AAS may lead to a variety of neuroendocrine problems. Precisely, the hypothalamic-pituitary-gonadal (HPG) axis is one of the body systems that is mainly influenced by steroidal hormones. Fluctuations of the hormonal milieu result in alterations of reproductive function, which are made through changes in hypothalamic neurons expressing gonadotropin-releasing hormone (GnRH). In fact, previous studies have shown that AAS modulate the activity of these neurons through steroid-sensitive afferents. To increase knowledge about the cellular mechanisms induced by AAS in GnRH neurons, we performed proteomic analyses of the murine hypothalamic GT1-7 cell line after exposure to 17α-methyltestosterone (17α-meT; 1 µM). These cells represent a good model for studying regulatory processes because they exhibit the typical characteristics of GnRH neurons, and respond to compounds that modulate GnRH in vivo. Two-dimensional difference in gel electrophoresis (2D-DIGE) and mass spectrometry analyses identified a total of 17 different proteins that were significantly affected by supraphysiological levels of AAS. Furthermore, pathway analyses showed that modulated proteins were mainly associated to glucose metabolism, drug detoxification, stress response and cell cycle. Validation of many of these proteins, such as GSTM1, ERH, GAPDH, PEBP1 and PDIA6, were confirmed by western blotting. We further demonstrated that AAS exposure decreased expression of estrogen receptors and GnRH, while two important signaling pathway proteins p-ERK, and p-p38, were modulated. Our results suggest that steroids have the capacity to directly affect the neuroendocrine system by modulating key cellular processes for the control of reproductive function.


Assuntos
Anabolizantes/farmacologia , Androgênios/farmacologia , Hipotálamo/citologia , Transcriptoma/efeitos dos fármacos , Animais , Linhagem Celular , Relação Dose-Resposta a Droga , Camundongos , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapses/fisiologia
2.
PLoS One ; 12(7): e0181779, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28746408

RESUMO

OBJECTIVE: HIV-infected monocytes can infiltrate the blood brain barrier as differentiated macrophages to the central nervous system, becoming the primary source of viral and cellular neurotoxins. The final outcome is HIV-associated cognitive impairment (HACI), which remain prevalent today, possibly due to the longer life-span of the patients treated with combined anti-retroviral therapy. Our main goal was to characterize the proteome of monocyte-derived macrophages (MDM) from HACI patients, and its association with their cognitive status, to find novel targets for therapy. METHODS: MDM were isolated from the peripheral blood of 14 HIV-seropositive women characterized for neurocognitive function, including: four normal cognition (NC), five asymptomatic (A), and five with cognitive impaired (CI). Proteins from macrophage lysates were isobaric-labeled with the microwave and magnetic (M2) sample preparation method followed by liquid chromatography-tandem mass spectrometry-based protein identification and quantification. Differences in protein abundance across groups classified by HACI status were determined using analysis of variance. RESULTS: A total of 2,519 proteins were identified with 2 or more peptides and 28 proteins were quantified as differentially expressed. Statistical analysis revealed increased abundance of 17 proteins in patients with HACI (p<0.05), including several enzymes associated to the glucose metabolism. Western blot confirmed increased expression of 6-Phosphogluconate dehydrogenase and L-Plastin in A and CI patients over NC and HIV seronegatives. CONCLUSIONS: This is the first quantitative proteomics study exploring the changes in protein abundance of macrophages isolated from patients with HACI. Further studies are warranted to determine if these proteins may be target candidates for therapy development against HACI.


Assuntos
Transtornos Cognitivos/metabolismo , Infecções por HIV/metabolismo , Macrófagos/metabolismo , Proteoma/análise , Proteômica/métodos , Análise de Variância , Western Blotting , Células Cultivadas , Cromatografia Líquida , Transtornos Cognitivos/complicações , Estudos de Coortes , Estudos Transversais , Feminino , Infecções por HIV/complicações , Humanos , Magnetismo , Micro-Ondas , Mapas de Interação de Proteínas , Proteoma/metabolismo , Proteômica/instrumentação , Espectrometria de Massas em Tandem
3.
J Neurosci ; 36(41): 10625-10639, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27733613

RESUMO

It has been suggested that drug tolerance represents a form of learning and memory, but this has not been experimentally established at the molecular level. We show that a component of alcohol molecular tolerance (channel internalization) from rat hippocampal neurons requires protein synthesis, in common with other forms of learning and memory. We identify ß-catenin as a primary necessary protein. Alcohol increases ß-catenin, and blocking accumulation of ß-catenin blocks alcohol-induced internalization in these neurons. In transfected HEK293 cells, suppression of Wnt/ß-catenin signaling blocks ethanol-induced internalization. Conversely, activation of Wnt/ß-catenin reduces BK current density. A point mutation in a putative glycogen synthase kinase phosophorylation site within the S10 region of BK blocks internalization, suggesting that Wnt/ß-catenin directly regulates alcohol-induced BK internalization via glycogen synthase kinase phosphorylation. These findings establish de novo protein synthesis and Wnt/ß-catenin signaling as critical in mediating a persistent form of BK molecular alcohol tolerance establishing a commonality with other forms of long-term plasticity. SIGNIFICANCE STATEMENT: Alcohol tolerance is a key step toward escalating alcohol consumption and subsequent dependence. Our research aims to make significant contributions toward novel, therapeutic approaches to prevent and treat alcohol misuse by understanding the molecular mechanisms of alcohol tolerance. In our current study, we identify the role of a key regulatory pathway in alcohol-induced persistent molecular changes within the hippocampus. The canonical Wnt/ß-catenin pathway regulates BK channel surface expression in a protein synthesis-dependent manner reminiscent of other forms of long-term hippocampal neuronal adaptations. This unique insight opens the possibility of using clinically tested drugs, targeting the Wnt/ß-catenin pathway, for the novel use of preventing and treating alcohol dependency.


Assuntos
Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/biossíntese , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Tolerância a Medicamentos , Quinases da Glicogênio Sintase/genética , Quinases da Glicogênio Sintase/metabolismo , Células HEK293 , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Alta/efeitos dos fármacos , Plasticidade Neuronal , Neurônios/efeitos dos fármacos , Fosforilação , Mutação Puntual , Ratos , beta Catenina/metabolismo
4.
Am J Cancer Res ; 6(8): 1720-40, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27648361

RESUMO

Inflammatory Breast Cancer (IBC) is the most lethal form of breast cancer with a 35% 5-year survival rate. The accurate and early diagnosis of IBC and the development of targeted therapy against this deadly disease remain a great medical challenge. Plasma membrane proteins (PMPs) such as E-cadherin and EGFR, play an important role in the progression of IBC. Because the critical role of PMPs in the oncogenic processes they are the perfect candidates as molecular markers and targets for cancer therapies. In the present study, Stable Isotope Labeling with Amino Acids in Cell Culture (SILAC) followed by mass spectrometry analysis was used to compare the relative expression levels of membrane proteins (MP) between non-cancerous mammary epithelial and IBC cells, MCF-10A and SUM-149, respectively. Six of the identified PMPs were validated by immunoblotting using the membrane fractions of non-IBC and IBC cell lines, compared with MCF-10A cells. Immunohistochemical analysis using IBC, invasive ductal carcinoma or normal mammary tissue samples was carried out to complete the validation method in nine of the PMPs. We identified and quantified 278 MPs, 76% of which classified as PMPs with 1.3-fold or higher change. We identified for the first time the overexpression of the novel plasminogen receptor, PLGRKT in IBC and of the carrier protein, SCAMP3. Furthermore, we describe the positive relationship between L1CAM expression and metastasis in IBC patients and the role of SCAMP3 as a tumor-related protein. Overall, the membrane proteomic signature of IBC reflects a global change in cellular organization and suggests additional strategies for cancer progression. Together, this study provides insight into the specialized IBC plasma membrane proteome with the potential to identify a number of novel therapeutic targets for IBC.

5.
Proteomics Clin Appl ; 10(2): 136-43, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26220577

RESUMO

PURPOSE: Thirty to 50% of HIV patients develop HIV-associated neurocognitive disorders (HANDs) despite combined antiretroviral therapy. HIV-1-infected macrophages release viral and cellular proteins that induce neuronal degeneration and death. We hypothesize that changes in the macrophage secretome of HIV-1 seropositive patients with HAND may dissect proteins related to neurotoxicity. EXPERIMENTAL DESIGN: Monocyte-derived macrophages (MDMs) were isolated from the peripheral blood of 12 HIV+ and four HIV- women characterized for neurocognitive function. Serum-free MDM supernatants were collected for protein isolation and quantification with iTRAQ® labeling. Protein identification was performed using a LTQ Orbitrap Velos mass spectrometer and validated in MDM supernatants and in plasma using ELISA. RESULTS: Three proteins were different between normal cognition (NC) and asymptomatic neurocognitive disorders (ANI), six between NC and HIV-associated dementia (HAD), and six between NC and HAD. Among these, S100A9 was decreased in plasma from patients with ANI, and metalloproteinase 9 was decreased in the plasma of all HIV+ patients regardless of cognitive status, and was significantly reduced in supernatant of MDM isolated from patients with ANI. CONCLUSIONS AND CLINICAL RELEVANCE: S100A9 and metalloproteinase 9 have been associated with inflammation and cognitive impairment, and therefore represent potential targets for HAND treatment.


Assuntos
Complexo AIDS Demência/complicações , Macrófagos/metabolismo , Macrófagos/virologia , Transtornos Neurocognitivos/complicações , Complexo AIDS Demência/virologia , Calgranulina B/sangue , Células Cultivadas , Feminino , Humanos , Metaloproteinase 9 da Matriz/sangue , Transtornos Neurocognitivos/virologia , Proteômica
6.
AIDS ; 29(16): 2081-92, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26208400

RESUMO

OBJECTIVE: HIV-1 infection of macrophages increases cathepsin B secretion and induces neuronal apoptosis, but the molecular mechanism remains unclear. DESIGN: We identified macrophage-secreted cathepsin B protein interactions extracellularly and their contribution to neuronal death in vitro. METHODS: Cathepsin B was immunoprecipitated from monocyte-derived macrophage supernatants after 12 days postinfection. The cathepsin B interactome was identified by label-free tandem mass spectrometry and compared with uninfected supernatants. Proteins identified were validated by western blot. Neurons were exposed to macrophage-conditioned media in presence or absence of antibodies against cathepsin B and interacting proteins. Apoptosis was measured using TUNEL labeling. Immunohistochemistry of postmortem brain tissue samples from healthy, HIV-infected and Alzheimer's disease patients was performed to observe the ex-vivo expression of the proteins identified. RESULTS: Nine proteins co-immunoprecipitated differentially with cathepsin B between uninfected and HIV-infected macrophages. Serum amyloid P component (SAPC)-cathepsin B interaction increased in HIV-infected macrophage supernatants, while matrix metalloprotease 9 (MMP-9)-cathepsin B interaction decreased. Pre-treatment of HIV-infected macrophage-conditioned media with antibodies against cathepsin B and SAPC decreased neuronal apoptosis. The addition of MMP-9 antibodies was not neuro-protective SAPC was overexpressed in postmortem brain tissue from HIV-positive neurocognitive impaired patients compared with HIV positive with normal cognition and healthy controls, although MMP-9 expression was similar in all tissues. CONCLUSION: Inhibiting SAPC-cathepsin B interaction protects against HIV-induced neuronal death and may help to find alternative treatments for HIV-associated neurocognitive disorders.


Assuntos
Apoptose , Catepsina B/metabolismo , Infecções por HIV/imunologia , HIV-1/imunologia , Macrófagos/imunologia , Macrófagos/virologia , Neurônios/efeitos dos fármacos , Células Cultivadas , Meios de Cultivo Condicionados , Feminino , Infecções por HIV/patologia , Infecções por HIV/virologia , Humanos , Neurônios/fisiologia
7.
Infect Immun ; 71(11): 6487-98, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14573671

RESUMO

A bovine-specific cDNA microarray system was used to compare gene expression profiles of peripheral blood mononuclear cells (PBMCs) from control uninfected (n = 4) and Johne's disease-positive (n = 6) Holstein cows. Microarray experiments were designed so that for each animal, a direct comparison was made between PBMCs stimulated in vitro with Mycobacterium avium subsp. paratuberculosis and PBMCs stimulated with phosphate-buffered saline (nil-stimulated PBMCs). As expected, M. avium subsp. paratuberculosis stimulation of infected cow PBMCs enhanced expression of gamma interferon transcripts. In addition, expression of 15 other genes was significantly affected (>1.25-fold change; P < 0.05) by in vitro stimulation with M. avium subsp. paratuberculosis. Similar treatment of control cow PBMCs with M. avium subsp. paratuberculosis resulted in significant changes in expression of 13 genes, only 2 of which were also affected in PBMCs from the infected cow PBMCs. To compare gene expression patterns in the two cow infection groups (infected cows and uninfected cows), a mixed-model analysis was performed with the microarray data. This analysis indicated that there were major differences in the gene expression patterns between cells isolated from the two groups of cows, regardless of in vitro stimulation. A total of 86 genes were significantly differentially expressed (P < 0.01) in M. avium subsp. paratuberculosis-stimulated PBMCs from infected cows compared to expression in similarly treated PBMCs from control cows. Surprisingly, a larger number of genes (110 genes) were also found to be significantly differentially expressed (P < 0.01) in nil-stimulated cells from the two infection groups. The expression patterns of selected genes were substantiated by quantitative real-time reverse transcriptase PCR. Flow cytometric analysis indicated that there were no gross differences in the relative populations of major immune cell types in PBMCs from infected and control cows. Thus, data presented in this report indicate that the gene expression program of PBMCs from M. avium subsp. paratuberculosis-infected cows is inherently different from that of cells from control uninfected cows.


Assuntos
Perfilação da Expressão Gênica , Leucócitos Mononucleares/metabolismo , Paratuberculose/imunologia , Animais , Bovinos , Feminino , Citometria de Fluxo , Análise de Sequência com Séries de Oligonucleotídeos , Paratuberculose/sangue , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...