Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Mol Genet ; 16(23): 2972-86, 2007 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-17905753

RESUMO

The zinc-finger transcription factor SLUG (SNAI2) triggers epithelial-mesenchymal transitions (EMTs) and plays an important role in the developmental processes. Here, we show that SLUG is expressed in white adipose tissue (WAT) in humans and its expression is tightly controlled during adipocyte differentiation. Slug-deficient mice exhibit a marked deficiency in WAT size, and Slug-overexpressing mice (Combi-Slug) exhibit an increase in the WAT size. Consistent with in vivo data, Slug-deficient mouse embryonic fibroblasts (MEFs) showed a dramatically reduced capacity for adipogenesis in vitro and there was extensive lipid accumulation in Combi-Slug MEFs. The analysis of adipogenic gene expression both in vivo and in vitro showed that peroxisome proliferator-activated factor gamma2 (PPARgamma2) expression was altered. Complementation studies rescued this phenotype, indicating that WAT alterations induced by Slug are reversible. Our results further show a differential histone deacetylase recruitment to the PPARgamma2 promoter in a tissue- and Slug-dependent manner. Our results connect, for the first time, adipogenesis with the requirement of a critical level of an EMT regulator in mammals. This work may lead to the development of targeted drugs for the treatment of patients with obesity and/or lipodystrophy.


Assuntos
Tecido Adiposo/anatomia & histologia , Fatores de Transcrição/metabolismo , Células 3T3-L1 , Adipogenia/genética , Tecido Adiposo/metabolismo , Animais , Sequência de Bases , Primers do DNA/genética , Expressão Gênica , Humanos , Camundongos , Camundongos Knockout , Tamanho do Órgão/genética , Fatores de Transcrição da Família Snail , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Dedos de Zinco/genética
2.
Carcinogenesis ; 28(10): 2069-73, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17468515

RESUMO

FUS-DDIT3 is a chimeric oncogene generated by the most common chromosomal translocation t(12;16)(q13;p11) associated to liposarcomas. The application of transgenic methods and the use of primary mesenchymal progenitor cells to the study of this sarcoma-associated FUS-DDIT3 gene fusion have provided insights into their in vivo functions and suggested mechanisms by which lineage selection may be achieved. These studies indicate that FUS-DDIT3 contributes to differentiation arrest acting at a point in the adipocyte differentiation process after induction of peroxisome proliferator-activated receptor gamma (PPARgamma) expression. To test this idea within a living mouse, we generated mice expressing FUS-DDIT3 within aP2-positive cells, because aP2 is a downstream target of PPARgamma expressed at the immature adipocyte stage. Here, we report that FUS-DDIT3 expression was successfully induced at the aP2 stage of differentiation both in vivo and in vitro. aP2-FUS-DDIT3 mice do not develop liposarcomas and exhibit an increase in white adipose tissue size. Consistent with in vivo data, mouse embryonic fibroblasts (MEFs) obtained from aP2-FUS-DDIT3 mice not only were capable of terminal differentiation but also showed an increased capacity for adipogenesis in vitro compared with wild-type MEFs. Taken together, this study provides genetic evidence that the presence of FUS-DDIT3 in an aP2-positive cell is not enough to cause liposarcoma development and establishes that PPARgamma inactivation is required for liposarcoma development.


Assuntos
Adipócitos/citologia , Lipossarcoma/genética , PPAR gama/antagonistas & inibidores , Proteína FUS de Ligação a RNA/genética , Fator de Transcrição CHOP/genética , Animais , Diferenciação Celular , Cromossomos Humanos Par 16 , Cromossomos Humanos Par 2 , Fibroblastos/fisiologia , Humanos , Lipossarcoma/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Nus , Camundongos Transgênicos , Regiões Promotoras Genéticas , RNA/genética , RNA/isolamento & purificação , Translocação Genética
3.
Methods Enzymol ; 407: 676-90, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16757361

RESUMO

Although activating mutations in KRAS are identified in most pancreatic cancers and a large number of other neoplasms, our understanding of the precise molecular and cellular mechanisms that constitute the oncogenic effects of mutant KRAS has been insufficient to formulate an effective therapeutic strategy for affected patients. Interestingly, we have observed that supraphysiological expression of oncogenic Ras causes premature senescence, while endogenous expression of oncogenic Ras confers immortalization in primary murine cells. This suggests that the predominant biological systems previously used to evaluate oncogenic Ras may not reflect the true molecular or cellular properties of this oncogene. Here, we review the use of conditional oncogenic mutations in the endogenous Kras allele as a system for exploring oncogenic Kras biochemistry, cell biology, and tumor modeling.


Assuntos
Genes ras/fisiologia , Animais , Carcinoma Ductal Pancreático/genética , Células Cultivadas , Modelos Animais de Doenças , Genes ras/genética , Integrases/genética , Camundongos
4.
Genomics ; 87(1): 113-8, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16311016

RESUMO

There is a need to reveal mechanisms that account for maintenance of the mesenchymal phenotype in normal development and cancer. Slug (approved gene symbol Snai2), a member of the Snail gene family of zinc-finger transcription factors, is believed to function in the maintenance of the nonepithelial phenotype. This study identified candidate Slug target genes linked to Slug gene suppression in primary mouse embryonic fibroblasts. Expression analyses were performed with a mouse cDNA microarray (Mousechip-CNIO) containing 15,000 clones. A total of 15 novel Slug target species were validated by real-time PCR or Western analyses. These included self-renewal genes (Bmi1, Nanog, Gfi1), epithelial-mesenchymal genes (Tcfe2a, Ctnb1, Sin3a, Hdac1, Hdac2, Muc1, Cldn11), survival genes (Bcl2, Bbc3), and cell cycle/damage genes (Cdkn1a, Rbl1, Mdm2). Expression patterns were studied in wild-type MEFs and Slug-deficient MEFs. Slug-complementation studies recovered aberrant gene expression in cells lacking Slug, indicating that these genes were regulated directly by Slug. These results highlight their potential roles in mediating Slug function in mesenchymal cells and may help to identify novel therapeutic biomarkers in cancers linked to Slug.


Assuntos
Embrião de Mamíferos/fisiologia , Fibroblastos/fisiologia , Regulação da Expressão Gênica/genética , Análise de Sequência com Séries de Oligonucleotídeos , Fatores de Transcrição/genética , Animais , Biomarcadores Tumorais/genética , Diferenciação Celular/genética , Dano ao DNA/genética , Embrião de Mamíferos/citologia , Fibroblastos/citologia , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/genética , Genes cdc/fisiologia , Teste de Complementação Genética/métodos , Camundongos , Neoplasias/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Fatores de Transcrição da Família Snail , Fatores de Transcrição/deficiência , Fatores de Transcrição/metabolismo
5.
Hum Mol Genet ; 14(22): 3449-61, 2005 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-16207734

RESUMO

The zinc-finger transcription factor Snail is believed to trigger epithelial-mesenchymal transitions (EMTs) during cancer progression. This idea is supported by analysis of Snail knockout mice, which uncovered crucial role of Snail in gastrulation, and of individuals with cancer, in whom Snail expression is frequently upregulated. However, these results have not shown a direct link between Snail and the pathogenesis of cancer. Here we show that mice carrying hypomorphic tetracycline-repressible Snail transgenes, that increase Snail expression to 20% above normal levels, exhibit no morphological alterations and develop both epithelial and mesenchymal tumours (leukaemias). Suppression of the Snail transgene did not rescue the malignant phenotype, indicating that alterations induced by Snail are irreversible. CombitTA-Snail murine embryonic fibroblasts show similar migratory ability to that of control mouse embryonic fibroblasts (MEFs). However, CombitTA-Snail-MEFs induce tumour formation in nude mice. CombitTA-Snail expression results in increased radioprotection in vivo, although it does not affect p53 regulation in response to DNA damage. In concert with these results, Snail expression is repressed following DNA damage. This regulation of Snail by DNA damage is p53-independent. Our results connect DNA damage with the requirement of a critical level of an EMT regulator and provide genetic evidence that Snail plays essential roles in cancer development in mammals and thereby influences cell fate in the genotoxic stress response.


Assuntos
Neoplasias/genética , Neoplasias/metabolismo , Fatores de Transcrição/genética , Animais , Células COS , Linhagem Celular , Células Cultivadas , Chlorocebus aethiops , Raios gama , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Knockout , Camundongos Nus , Camundongos Transgênicos , Neoplasias/patologia , Neoplasias/radioterapia , RNA Mensageiro , Fatores de Transcrição da Família Snail , Fatores de Transcrição/metabolismo
6.
Oncogene ; 24(19): 3073-82, 2005 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-15735690

RESUMO

The SNAIL-related zinc-finger transcription factor, SLUG (SNAI2), is critical for the normal development of neural crest-derived cells and loss-of-function SLUG mutations have been proven to contribute to piebaldism and Waardenburg syndrome type 2 in a dose-dependent fashion. While aberrant induction of SLUG has been documented in cancer cells, relatively little is known about the consequences of SLUG overexpression in malignancy. To investigate the potential role of SLUG overexpression in development and in cancer, we generated mice carrying a tetracycline-repressible Slug transgene. These mice were morphologically normal at birth, and developed mesenchymal tumours (leukaemia and sarcomas) in almost all cases examined. Suppression of the Slug transgene did not rescue the malignant phenotype. Furthermore, the BCR-ABL oncogene, which induces Slug expression in leukaemic cells, did not induce leukaemia in Slug-deficient mice, implicating Slug in BCR-ABL leukaemogenesis in vivo. Overall, the findings indicate that while Slug overexpression is not sufficient to cause overt morphogenetic defects in mice, they demonstrate a specific and critical role for Slug in the pathogenesis of mesenchymal tumours.


Assuntos
Neoplasias/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , DNA Complementar/metabolismo , Feminino , Proteínas de Fusão bcr-abl/metabolismo , Heterozigoto , Homozigoto , Humanos , Células K562 , Leucemia/etiologia , Leucemia/genética , Masculino , Mesoderma/metabolismo , Camundongos , Camundongos Nus , Camundongos Transgênicos , Modelos Biológicos , Modelos Genéticos , Mutação , Transplante de Neoplasias , Neoplasias/etiologia , Neoplasias Experimentais/metabolismo , Fenótipo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição da Família Snail , Fatores de Tempo , Transfecção , Transgenes , Células U937
7.
Oncogene ; 21(11): 1679-84, 2002 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-11896599

RESUMO

Fusion proteins created by chromosomal abnormalities are key components of mesenchymal cancer development. The most common chromosomal translocation in liposarcomas, t(12;16)(q13;p11), creates the FUS-CHOP fusion gene. In the past, we generated FUS-CHOP and CHOP transgenic mice and have shown that while FUS-CHOP transgenic develop liposarcomas, mice expressing CHOP, which lacks the FUS domain, display essentially normal white adipose tissue (WAT) development, suggesting that the FUS domain of FUS-CHOP plays a specific and critical role in the pathogenesis of liposarcoma. To test the significance of FUS and CHOP domain interactions within a living mouse, we generated mice expressing the FUS domain and crossed them with CHOP-transgenic mice to generate double-transgenic FUSxCHOP animals. Here we report that expression of the FUS domain restores liposarcoma development in CHOP-transgenic mice. Our results provide genetic evidence that FUS and CHOP domains function in trans for the mutual restoration of liposarcoma. These results identify a new mechanism of tumor-associated fusion genes and might have impact beyond myxoid liposarcoma.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/fisiologia , Lipossarcoma/etiologia , Proteínas de Fusão Oncogênica/genética , Ribonucleoproteínas/fisiologia , Fatores de Transcrição/fisiologia , Adipócitos/fisiologia , Animais , Diferenciação Celular , Ribonucleoproteínas Nucleares Heterogêneas , Humanos , Lipossarcoma/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Proteína FUS de Ligação a RNA , Fator de Transcrição CHOP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...