Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Development ; 151(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38131530

RESUMO

During development, the rate of tissue growth is determined by the relative balance of cell division and cell death. Cell competition is a fitness quality-control mechanism that contributes to this balance by eliminating viable cells that are less fit than their neighbours. The mutations that confer cells with a competitive advantage and the dynamics of the interactions between winner and loser cells are not well understood. Here, we show that embryonic cells lacking the tumour suppressor p53 are 'super-competitors' that eliminate their wild-type neighbours through the direct induction of apoptosis. This elimination is context dependent, as it does not occur when cells are pluripotent and it is triggered by the onset of differentiation. Furthermore, by combining mathematical modelling and cell-based assays we show that the elimination of wild-type cells is not through competition for space or nutrients, but instead is mediated by short-range interactions that are dependent on the local cell neighbourhood. This highlights the importance of the local cell neighbourhood and the competitive interactions within this neighbourhood for the regulation of proliferation during early embryonic development.


Assuntos
Comunicação Celular , Células-Tronco Pluripotentes , Comunicação Celular/fisiologia , Proteína Supressora de Tumor p53/genética , Mutação/genética , Apoptose/genética
2.
Dev Cell ; 57(11): 1316-1330.e7, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35597240

RESUMO

The changes that drive differentiation facilitate the emergence of abnormal cells that need to be removed before they contribute to further development or the germline. Consequently, in mice in the lead-up to gastrulation, ∼35% of embryonic cells are eliminated. This elimination is caused by hypersensitivity to apoptosis, but how it is regulated is poorly understood. Here, we show that upon exit of naive pluripotency, mouse embryonic stem cells lower their mitochondrial apoptotic threshold, and this increases their sensitivity to cell death. We demonstrate that this enhanced apoptotic response is induced by a decrease in mitochondrial fission due to a reduction in the activity of dynamin-related protein 1 (DRP1). Furthermore, we show that in naive pluripotent cells, DRP1 prevents apoptosis by promoting mitophagy. In contrast, during differentiation, reduced mitophagy levels facilitate apoptosis. Together, these results indicate that during early mammalian development, DRP1 regulation of mitophagy determines the apoptotic response.


Assuntos
Dinaminas/metabolismo , Mitofagia , Animais , Apoptose/fisiologia , Mamíferos/metabolismo , Camundongos , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/fisiologia , Mitofagia/fisiologia
3.
Nat Metab ; 3(8): 1091-1108, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34253906

RESUMO

Cell competition is emerging as a quality-control mechanism that eliminates unfit cells in a wide range of settings from development to the adult. However, the nature of the cells normally eliminated by cell competition and what triggers their elimination remains poorly understood. In mice, 35% of epiblast cells are eliminated before gastrulation. Here we show that cells with mitochondrial defects are eliminated by cell competition during early mouse development. Using single-cell transcriptional profiling of eliminated mouse epiblast cells, we identify hallmarks of cell competition and mitochondrial defects. We demonstrate that mitochondrial defects are common to a range of different loser cell types and that manipulating mitochondrial function triggers cell competition. Moreover, we show that in the mouse embryo, cell competition eliminates cells with sequence changes in mt-Rnr1 and mt-Rnr2, and that even non-pathological changes in mitochondrial DNA sequences can induce cell competition. Our results suggest that cell competition is a purifying selection that optimizes mitochondrial performance before gastrulation.


Assuntos
Competição entre as Células , Embrião de Mamíferos , Desenvolvimento Embrionário , Mitocôndrias/genética , Mitocôndrias/metabolismo , Animais , Biomarcadores , Desenvolvimento Embrionário/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Análise de Célula Única/métodos
4.
Open Biol ; 11(5): 200408, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33947246

RESUMO

Linker histones H1 are essential chromatin components that exist as multiple developmentally regulated variants. In metazoans, specific H1s are expressed during germline development in a tightly regulated manner. However, the mechanisms governing their stage-dependent expression are poorly understood. Here, we address this question in Drosophila, which encodes for a single germline-specific dBigH1 linker histone. We show that during female germline lineage differentiation, dBigH1 is expressed in germ stem cells and cystoblasts, becomes silenced during transit-amplifying (TA) cystocytes divisions to resume expression after proliferation stops and differentiation starts, when it progressively accumulates in the oocyte. We find that dBigH1 silencing during TA divisions is post-transcriptional and depends on the tumour suppressor Brain tumour (Brat), an essential RNA-binding protein that regulates mRNA translation and stability. Like other oocyte-specific variants, dBigH1 is maternally expressed during early embryogenesis until it is replaced by somatic dH1 at the maternal-to-zygotic transition (MZT). Brat also mediates dBigH1 silencing at MZT. Finally, we discuss the situation in testes, where Brat is not expressed, but dBigH1 is translationally silenced too.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/biossíntese , Proteínas de Drosophila/metabolismo , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Histonas/biossíntese , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Feminino , Histonas/genética
5.
Semin Cancer Biol ; 63: 36-43, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31102668

RESUMO

The maintenance of tissue homeostasis and health relies on the efficient removal of damaged or otherwise suboptimal cells. One way this is achieved is through cell competition, a fitness quality control mechanism that eliminates cells that are less fit than their neighbours. Through this process, cell competition has been shown to play diverse roles in development and in the adult, including in homeostasis and tumour suppression. However, over the last few years it has also become apparent that certain oncogenic mutations can provide cells with a competitive advantage that promotes their expansion via the elimination of surrounding wild-type cells. Thus, understanding how this process is initiated and regulated will provide important insights with relevance to a number of different research areas. A key question in cell competition is what determines the competitive fitness of a cell. Here, we will review what is known about this question by focussing on two non-mutually exclusive possibilities; first, that the activity of a subset of transcription factors determines competitive fitness, and second, that the outcome of cell competition is determined by the relative cellular metabolic status.


Assuntos
Neoplasias/genética , Neoplasias/patologia , Animais , Comunicação Celular/fisiologia , Aptidão Genética , Humanos , Mutação , Neoplasias/metabolismo , Oncogenes , Seleção Genética , Transcrição Gênica
6.
Cell Rep ; 21(11): 3178-3189, 2017 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-29241545

RESUMO

Drosophila spermatogenesis constitutes a paradigmatic system to study maintenance, proliferation, and differentiation of adult stem cell lineages. Each Drosophila testis contains 6-12 germ stem cells (GSCs) that divide asymmetrically to produce gonialblast cells that undergo four transit-amplifying (TA) spermatogonial divisions before entering spermatocyte differentiation. Mechanisms governing these crucial transitions are not fully understood. Here, we report the essential role of the germline linker histone dBigH1 during early spermatogenesis. Our results suggest that dBigH1 is a general silencing factor that represses Bam, a key regulator of spermatogonia proliferation that is silenced in spermatocytes. Reciprocally, Bam represses dBigH1 during TA divisions. This double-repressor mechanism switches dBigH1/Bam expression from off/on in spermatogonia to on/off in spermatocytes, regulating progression into spermatocyte differentiation. dBigH1 is also required for GSC maintenance and differentiation. These results show the critical importance of germline H1s for male GSC lineage differentiation, unveiling a regulatory interaction that couples transcriptional and translational repression.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Histonas/genética , Espermatócitos/metabolismo , Espermatogênese/genética , Espermatogônias/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Histonas/metabolismo , Masculino , Biossíntese de Proteínas , Transdução de Sinais , Espermatócitos/citologia , Espermatócitos/crescimento & desenvolvimento , Espermatogônias/citologia , Espermatogônias/crescimento & desenvolvimento , Testículo/citologia , Testículo/crescimento & desenvolvimento , Testículo/metabolismo , Transcrição Gênica
7.
Biochim Biophys Acta ; 1859(3): 526-32, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26361208

RESUMO

Eukaryotic genomes are structured in the form of chromatin with the help of a set of five small basic proteins, the histones. Four of them are highly conserved through evolution, form the basic unit of the chromatin, the nucleosome, and have been intensively studied and are well characterized. The fifth histone, histone H1, adds to this basic structure through its interaction at the entry/exit site of DNA in the nucleosome and makes an essential contribution to the higher order folding of the chromatin fiber. Histone H1 is the less conserved histone and the less known of them. Though for long time considered as a general repressor of gene expression, recent studies in Drosophila have rejected this view and have contributed to uncover important functions on genome stability and development. Here we present some of the most recent data obtained in the Drosophila model system and discuss how the lessons learnt in these studies compare and could be applied to all other eukaryotes.


Assuntos
Histonas/fisiologia , Sequência de Aminoácidos , Animais , Drosophila , Instabilidade Genômica , Heterocromatina/química , Histonas/química , Dados de Sequência Molecular
8.
Chromosoma ; 125(1): 1-13, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25921218

RESUMO

The eukaryotic genome is packed into chromatin, a nucleoprotein complex mainly formed by the interaction of DNA with the abundant basic histone proteins. The fundamental structural and functional subunit of chromatin is the nucleosome core particle, which is composed by 146 bp of DNA wrapped around an octameric protein complex formed by two copies of each core histone H2A, H2B, H3, and H4. In addition, although not an intrinsic component of the nucleosome core particle, linker histone H1 directly interacts with it in a monomeric form. Histone H1 binds nucleosomes near the exit/entry sites of linker DNA, determines nucleosome repeat length and stabilizes higher-order organization of nucleosomes into the ∼30 nm chromatin fiber. In comparison to core histones, histone H1 is less well conserved through evolution. Furthermore, histone H1 composition in metazoans is generally complex with most species containing multiple variants that play redundant as well as specific functions. In this regard, a characteristic feature is the presence of specific H1 variants that replace somatic H1s in the germline and during early embryogenesis. In this review, we summarize our current knowledge about their structural and functional properties.


Assuntos
Eucariotos/metabolismo , Células Germinativas/metabolismo , Histonas/metabolismo , Nucleossomos , Animais , Feminino , Histonas/fisiologia , Humanos , Masculino , Isoformas de Proteínas
9.
Dev Cell ; 26(6): 578-90, 2013 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-24055651

RESUMO

Histone H1 is an essential chromatin component. Metazoans usually contain multiple stage-specific H1s. In particular, specific variants replace somatic H1s during early embryogenesis. In this regard, Drosophila was an exception because a single dH1 was identified that, starting at cellularization, is detected throughout development in somatic cells. Here, we identify the embryonic H1 of Drosophila, dBigH1. dBigH1 is abundant before cellularization occurs, when somatic dH1 is absent and the zygotic genome is inactive. Upon cellularization, when the zygotic genome is progressively activated, dH1 replaces dBigH1 in the soma, but not in the primordial germ cells (PGCs) that have delayed zygotic genome activation (ZGA). In addition, a loss-of-function mutant shows premature ZGA in both the soma and PGCs. Mutant embryos die at cellularization, showing increased levels of active RNApol II and zygotic transcripts, along with DNA damage and mitotic defects. These results show an essential function of dBigH1 in ZGA regulation.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Genoma de Inseto , Histonas/metabolismo , Zigoto/metabolismo , Sequência de Aminoácidos , Animais , Dano ao DNA , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Células Germinativas/metabolismo , Histonas/química , Histonas/genética , Mitose , Dados de Sequência Molecular , Mutação , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...