Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 15(4)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37111758

RESUMO

Lung cancer is the leading cause of cancer-related death worldwide. Its late diagnosis and consequently poor survival make necessary the search for new therapeutic targets. The mitogen-activated protein kinase (MAPK)-interacting kinase 1 (MNK1) is overexpressed in lung cancer and correlates with poor overall survival in non-small cell lung cancer (NSCLC) patients. The previously identified and optimized aptamer from our laboratory against MNK1, apMNKQ2, showed promising results as an antitumor drug in breast cancer in vitro and in vivo. Thus, the present study shows the antitumor potential of apMNKQ2 in another type of cancer where MNK1 plays a significant role, such as NSCLC. The effect of apMNKQ2 in lung cancer was studied with viability, toxicity, clonogenic, migration, invasion, and in vivo efficacy assays. Our results show that apMNKQ2 arrests the cell cycle and reduces viability, colony formation, migration, invasion, and epithelial-mesenchymal transition (EMT) processes in NSCLC cells. In addition, apMNKQ2 reduces tumor growth in an A549-cell line NSCLC xenograft model. In summary, targeting MNK1 with a specific aptamer may provide an innovative strategy for lung cancer treatment.

2.
Pharmaceuticals (Basel) ; 14(5)2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34067799

RESUMO

Vaccinia-related kinase (VRK) 1 is a serin/threonine kinase that plays an important role in DNA damage response (DDR), phosphorylating some proteins involved in this process such as 53BP1, NBS1 or H2AX, and in the cell cycle progression. In addition, VRK1 is overexpressed in many cancer types and its correlation with poor prognosis has been determined, showing VRK1 as a new therapeutic target in oncology. Using in vitro selection, high-affinity DNA aptamers to VRK1 were selected from a library of ssDNA. Selection was monitored using the enzyme-linked oligonucleotide assay (ELONA), and the selected aptamer population was cloned and sequenced. Three aptamers were selected and characterized. These aptamers recognized the protein kinase VRK1 with an affinity in the nanomolar range and showed a high sensibility. Moreover, the treatment of the MCF7 breast cell line with these aptamers resulted in a decrease in cyclin D1 levels, and an inhibition of cell cycle progression by G1 phase arrest, which induced apoptosis in cells. These results suggest that these aptamers are specific inhibitors of VRK1 that might be developed as potential drugs for the treatment of cancer.

3.
Oncotarget ; 9(17): 13501-13516, 2018 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-29568373

RESUMO

MAP kinase interacting kinases (MNKs) modulate the function of oncogene eukaryotic initiation factor 4E (eIF4E) through phosphorylation, which is necessary for oncogenic transformation. MNK1 gives rise to two mRNAs and thus two MNK1 isoforms, named MNK1a and MNK1b. MNK1b, the splice variant of human MNK1a, is constitutively active and independent of upstream MAP kinases. In this study, we have analyzed the expression of both MNK1 isoforms in 69 breast tumor samples and its association with clinicopathologic/prognostic characteristics of breast cancer. MNK1a and MNK1b expression was significantly increased in tumors relative to the corresponding adjacent normal tissue (p < 0.001). In addition, MNK1b overexpression was found in most of the triple-negative tumors and was associated with a shorter overall and disease-free survival time. Overexpression of MNK1b in MDA-MB-231 cells induced an increase in the expression of the MCL1 antiapoptotic protein and promoted proliferation, invasion and colony formation. In conclusion, a high expression level of MNK1b protein could be used as a marker of poor prognosis in breast cancer patients and it could be a therapeutic target in triple-negative tumors.

4.
Mol Ther Nucleic Acids ; 5: e308, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27070300

RESUMO

The genetic diversity of the influenza virus hinders the use of broad spectrum antiviral drugs and favors the appearance of resistant strains. Single-stranded DNA aptamers represent an innovative approach with potential application as antiviral compounds. The mRNAs of influenza virus possess a 5'cap structure and a 3'poly(A) tail that makes them structurally indistinguishable from cellular mRNAs. However, selective translation of viral mRNAs occurs in infected cells through a discriminatory mechanism, whereby viral polymerase and NS1 interact with components of the translation initiation complex, such as the eIF4GI and PABP1 proteins. We have studied the potential of two specific aptamers that recognize PABP1 (ApPABP7 and ApPABP11) to act as anti-influenza drugs. Both aptamers reduce viral genome expression and the production of infective influenza virus particles. The interaction of viral polymerase with the eIF4GI translation initiation factor is hindered by transfection of infected cells with both PABP1 aptamers, and ApPABP11 also inhibits the association of NS1 with PABP1 and eIF4GI. These results indicate that aptamers targeting the host factors that interact with viral proteins may potentially have a broad therapeutic spectrum, reducing the appearance of escape mutants and resistant subtypes.

5.
Mol Ther Nucleic Acids ; 5: e275, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26730812

RESUMO

Elevated expression levels of eukaryotic initiation factor 4E (eIF4E) promote cancer development and progression. MAP kinase interacting kinases (MNKs) modulate the function of eIF4E through the phosphorylation that is necessary for oncogenic transformation. Therefore, pharmacologic MNK inhibitors may provide a nontoxic and effective anticancer strategy. MNK1b is a truncated isoform of MNK1a that is active in the absence of stimuli. Using in vitro selection, high-affinity DNA aptamers to MNK1b were selected from a library of ssDNA. Selection was monitored using the enzyme-linked oligonucleotide assay (ELONA), and the selected aptamer population was cloned and sequenced. Four groups of aptamers were identified, and the affinities of one representative for rMNK1b were determined using ELONA and quantitative polymerase chain reaction. Two aptamers, named apMNK2F and apMNK3R, had a lower Kd in the nmol/l range. The secondary structure of the selected aptamers was predicted using mFold, and the QGRS Mapper indicated the presence of potential G-quadruplex structures in both aptamers. The selected aptamers were highly specific against MNK1, showing higher affinity to MNK1b than to MNK1a. Interestingly, both aptamers were able to produce significant translation inhibition and prevent tumor cell proliferation and migration and colony formation in breast cancer cells. These results indicate that MNK1 aptamers have an attractive therapeutic potential.

6.
Biochim Biophys Acta ; 1823(2): 430-8, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22178387

RESUMO

Poor oxygenation (hypoxia) influences important physiological and pathological situations, including development, ischemia, stroke and cancer. Hypoxia induces protein synthesis inhibition that is primarily regulated at the level of initiation step. This regulation generally takes place at two stages, the phosphorylation of the subunit α of the eukaryotic initiation factor (eIF) 2 and the inhibition of the eIF4F complex availability by dephosphorylation of the inhibitory protein 4E-BP1 (eukaryotic initiation factor 4E-binding protein 1). The contribution of each of them is mainly dependent of the extent of the oxygen deprivation. We have evaluated the regulation of hypoxia-induced translation inhibition in nerve growth factor (NGF)-differentiated PC12 cells subjected to a low oxygen concentration (0.1%) at several times. Our findings indicate that protein synthesis inhibition occurs primarily by the disruption of eIF4F complex through 4E-BP1 dephosphorylation, which is produced by the inhibition of the mammalian target of rapamycin (mTOR) activity via the activation of REDD1 (regulated in development and DNA damage 1) protein in a hypoxia-inducible factor 1 (HIF1)-dependent manner, as well as the translocation of eIF4E to the nucleus. In addition, this mechanism is reinforced by the increase in 4E-BP1 levels, mainly at prolonged times of hypoxia.


Assuntos
Hipóxia Celular , Fator de Iniciação 4F em Eucariotos/metabolismo , Fator de Crescimento Neural/farmacologia , Neurônios/metabolismo , Biossíntese de Proteínas , Trifosfato de Adenosina/metabolismo , Animais , Proteínas de Transporte/metabolismo , Diferenciação Celular , Fator de Iniciação 4F em Eucariotos/genética , Peptídeos e Proteínas de Sinalização Intracelular , Neurônios/citologia , Células PC12 , Fosfoproteínas/metabolismo , Ratos
7.
FEBS Lett ; 585(1): 193-8, 2011 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-21115009

RESUMO

Gene expression regulation in Leishmania has been related to post-transcriptional events involving mainly sequences present in the 5' and 3' untranslated regions. PABPs are high-affinity poly(A)-binding proteins that are implicated in the regulation of translation initiation, RNA stability and other important biological processes. We describe a PABP from Leishmania infantum (LiPABP) that shows a very high homology with PABPs from other eukaryotic organisms, including mammals and other parasites. LiPABP conserves the main domains present in other PABPs, maintains poly(A)-binding properties and is phosphorylated by p38 mitogen-activated protein kinase. Using the sera from dogs infected with L. infantum, we demonstrate that LiPABP is expressed in L. infantum promastigotes.


Assuntos
Leishmania infantum/metabolismo , Proteínas de Ligação a Poli(A)/metabolismo , Proteínas de Protozoários/metabolismo , Sequência de Aminoácidos , Animais , Western Blotting , Clonagem Molecular , Análise por Conglomerados , Cães , Células HEK293 , Humanos , Soros Imunes/imunologia , Leishmania infantum/genética , Leishmania infantum/crescimento & desenvolvimento , Dados de Sequência Molecular , Fosforilação , Filogenia , Poli A/genética , Poli A/metabolismo , Proteínas de Ligação a Poli(A)/classificação , Proteínas de Ligação a Poli(A)/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Homologia de Sequência de Aminoácidos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
J Histochem Cytochem ; 57(5): 503-12, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19188486

RESUMO

Increased protein synthesis is regulated, in part, by two eukaryotic translation initiation factors (eIFs): eIF4E and eIF2alpha. One or both of these factors are often overexpressed in several types of cancer cells; however, no data are available at present regarding eIF4E and eIF2alpha levels in brain tumors. In this study, we analyzed the expression, subcellular localization and phosphorylation states of eIF4E and eIF2alpha in 64 brain tumors (26 meningiomas, 16 oligodendroglial tumors, and 22 astrocytomas) and investigated the correlation with the expression of MIB-1, p53, and cyclin D1 proteins as well. There are significant differences in the phosphorylated eIF4E levels between the tumors studied, being the highest in meningiomas and the lowest in the oligodendroglial tumors. Relative to subcellular localization, eIF4E is frequently found in the nucleus of the oligodendroglial tumors and rarely in the same compartment of the meningiomas, whereas eIF2alpha showed an inverse pattern. Finally, cyclin D1 levels directly correlate with the phosphorylation status of both factors. The different expression, phosphorylation, or/and subcellular distribution of eIF2alpha and eIF4E within the brain types of tumors studied could indicate that different pathways are activated for promoting cell cycle proliferation, for instance, leading to increased cyclin D1 expression.


Assuntos
Neoplasias Encefálicas/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação 4E em Eucariotos/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/patologia , Proliferação de Células , Ciclina D1/metabolismo , Feminino , Humanos , Antígeno Ki-67/metabolismo , Masculino , Pessoa de Meia-Idade , Fosforilação , Proteína Supressora de Tumor p53/metabolismo , Adulto Jovem
9.
Exp Cell Res ; 299(2): 343-55, 2004 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-15350534

RESUMO

In this paper, we report the identification and molecular characterization of a splice variant of human Mnk1 which has been named as Mnk1b. Human Mnk1b mRNA is homologous to human Mnk1 mRNA but lacking a region corresponding to exon 19, which causes a change in the reading frame generating a stop codon. The resulting protein lacks the last 89 amino acids at the C-terminal region that are replaced by 12 amino acids with an entirely new sequence. The C-terminal end in Mnk1 corresponds to the extracellular signal-regulated kinase (ERK1/2) binding site. Although Mnk1b lacks this domain and, consequently, is not phosphorylated by ERK1/2, it is able, however, to phosphorylate eIF4E in vitro and in vivo in a mitogen-activated protein kinases-independent manner. This result suggests that Mnk1b may play a key role in regulating protein translation in the absence of stimuli. Interestingly, a significant population of cells shows Mnk1b within the nucleus whereas Mnk1 is always detected in the cytoplasm. This fact may be explained because Mnk1b maintains the nuclear localization signal (NLS) but lacks the nuclear export sequence (NES).


Assuntos
Processamento Alternativo , Fator de Iniciação 4E em Eucariotos/metabolismo , Variação Genética/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Serina-Treonina Quinases/genética , Sequência de Aminoácidos , Sítios de Ligação , Núcleo Celular , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteína Quinase 3 Ativada por Mitógeno , Dados de Sequência Molecular , Fosforilação , Isoformas de Proteínas , Proteínas Serina-Treonina Quinases/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...