Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 104(5): L052101, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34942825

RESUMO

We study the avalanche statistics observed in a minimal random growth model. The growth is governed by a reproduction rate obeying a probability distribution with finite mean a[over ¯] and variance v_{a}. These two control parameters determine if the avalanche size tends to a stationary distribution (finite scale statistics with finite mean and variance, or power-law tailed statistics with exponent ∈(1,3]), or instead to a nonstationary regime with log-normal statistics. Numerical results and their statistical analysis are presented for a uniformly distributed growth rate, which are corroborated and generalized by mathematical results. The latter show that the numerically observed avalanche regimes exist for a wide family of growth rate distributions, and they provide a precise definition of the boundaries between the three regimes.

2.
Phys Rev Lett ; 101(23): 230601, 2008 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-19113534

RESUMO

We propose a spin model with quenched disorder which exhibits in slow driving two drastically different types of critical nonequilibrium steady states. One of them corresponds to classical criticality requiring fine-tuning of the disorder. The other is a self-organized criticality which is insensitive to disorder. The crossover between the two types of criticality is determined by the mode of driving. As one moves from "soft" to "hard" driving the universality class of the critical point changes from a classical order-disorder to a quenched Edwards-Wilkinson universality class. The model is viewed as prototypical for a broad class of physical phenomena ranging from magnetism to earthquakes.

3.
Phys Rev Lett ; 99(7): 075501, 2007 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-17930905

RESUMO

We propose an explanation for the self-organization towards criticality observed in martensites during the cyclic process known as "training." The scale-free behavior originates from the interplay between the reversible phase transformation and the concurrent activity of lattice defects. The basis of the model is a continuous dynamical system on a rugged energy landscape, which in the quasistatic limit reduces to a sandpile automaton. We reproduce all the principal observations in thermally driven martensites, including power-law statistics, hysteresis shakedown, asymmetric signal shapes, and correlated disorder.

4.
Phys Rev Lett ; 93(19): 195701, 2004 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-15600852

RESUMO

We study the driving-rate and temperature dependence of the power-law exponents that characterize the avalanche distribution in first-order phase transitions. Measurements of acoustic emission in structural transitions in Cu-Zn-Al and Cu-Al-Ni are presented. We show how the observed behavior emerges within a general framework of competing time scales of avalanche relaxation, driving rate, and thermal fluctuations. We confirm our findings by numerical simulations of a prototype model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...