Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36500752

RESUMO

The interest in developing new fluids that can be used as dielectric liquids for transformers has driven the research on dielectric nanofluids in the last years. A number of authors have reported promising results on the electrical and thermal properties of dielectric nanofluids. Less attention has been paid to the interaction of these fluids with the cellulose materials that constitute the solid insulation of the transformers. In the present study, the dielectric strength of cellulose insulation is investigated, comparing its behavior when it is impregnated with transformer mineral oil and when it is impregnated with a dielectric nanofluid. The study includes the analysis of the AC breakdown voltage and the impulse breakdown voltage of the samples. Large improvements were observed on the AC breakdown voltages of the specimens impregnated with nanofluids, while the enhancements were lower in the case of the impulse tests. The reasons for the increase in AC breakdown voltage were investigated, considering the dielectric properties of the nanofluids used to impregnate the samples of cellulose. The analysis was completed with a finite element study that revealed the effect of the nanoparticles on the electric field distribution within the test cell, and its role in the observed enhancement.

2.
Nanomaterials (Basel) ; 9(2)2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30678033

RESUMO

The application of nanotechnology to the electrical insulation of transformers has become a topic of interest in the last few years. Most authors propose the use of dielectric nanofluids, which are obtained by dispersing low concentrations of nanoparticles in conventional insulating liquids. Although a good number of works have demonstrated that dielectric nanofluids may exhibit superior dielectric properties than the base fluids, there is a key issue that still needs to be addressed, which is the long-term stability of those liquids. The studies about the stability of dielectric nanofluids fluids that have been published so far analyze the performance of the fluids under laboratory conditions which are far from the real working conditions the liquids would be subjected to when working inside a transformer. In this paper, an experimental study is presented that evaluates the stability of several dielectric nanofluids under realistic transformer operating conditions. As the study demonstrates, the stability of dielectric nanofluids depends strongly on the working temperature, on the materials applied to obtain the fluid, and on the manufacturing procedure, while other aspects, such as the interaction with other materials, are less relevant. Additional topics, such as the methods applied for evaluation of the stability and the physical properties of the dielectric nanofluids under test, are discussed in the paper as well.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...