Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 176: 116893, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38850653

RESUMO

Polymer-cationic mediated gene delivery is a well-stablished strategy of transient gene expression (TGE) in mammalian cell cultures. Nonetheless, its industrial implementation is hindered by the phenomenon known as cell density effect (CDE) that limits the cell density at which cultures can be efficiently transfected. The rise in personalized medicine and multiple cell and gene therapy approaches based on TGE, make more relevant to understand how to circumvent the CDE. A rational study upon DNA/PEI complex formation, stability and delivery during transfection of HEK293 cell cultures has been conducted, providing insights on the mechanisms for polyplexes uptake at low cell density and disruption at high cell density. DNA/PEI polyplexes were physiochemically characterized by coupling X-ray spectroscopy, confocal microscopy, cryo-transmission electron microscopy (TEM) and nuclear magnetic resonance (NMR). Our results showed that the ionic strength of polyplexes significantly increased upon their addition to exhausted media. This was reverted by depleting extracellular vesicles (EVs) from the media. The increase in ionic strength led to polyplex aggregation and prevented efficient cell transfection which could be counterbalanced by implementing a simple media replacement (MR) step before transfection. Inhibiting and labeling specific cell-surface proteoglycans (PGs) species revealed different roles of PGs in polyplexes uptake. Importantly, the polyplexes uptake process seemed to be triggered by a coalescence phenomenon of HSPG like glypican-4 around polyplex entry points. Ultimately, this study provides new insights into PEI-based cell transfection methodologies, enabling to enhance transient transfection and mitigate the cell density effect (CDE).


Assuntos
DNA , Glipicanas , Transfecção , Humanos , Células HEK293 , Transfecção/métodos , Glipicanas/metabolismo , Glipicanas/genética , DNA/metabolismo , DNA/genética , Polietilenoimina/química , Proteoglicanas de Heparan Sulfato/metabolismo , Concentração Osmolar
2.
Mol Ther Methods Clin Dev ; 32(1): 101190, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38327808

RESUMO

The hitherto unexplained reduction of cell-specific productivity in transient gene expression (TGE) at high cell density (HCD) is known as the cell density effect (CDE). It currently represents a major challenge in TGE-based bioprocess intensification. This phenomenon has been largely reported, but the molecular principles governing it are still unclear. The CDE is currently understood to be caused by the combination of an unknown inhibitory compound in the extracellular medium and an uncharacterized cellular change at HCD. This study investigates the role of extracellular vesicles (EVs) as extracellular inhibitors for transfection through the production of HIV-1 Gag virus-like particles (VLPs) via transient transfection in HEK293 cells. EV depletion from the extracellular medium restored transfection efficiency in conditions that suffer from the CDE, also enhancing VLP budding and improving production by 60%. Moreover, an alteration in endosomal formation was observed at HCD, sequestering polyplexes and preventing transfection. Overexpression of UDP-glucose ceramide glucosyltransferase (UGCG) enzyme removed intracellular polyplex sequestration, improving transfection efficiency. Combining EV depletion and UGCG overexpression improved transfection efficiency by ∼45% at 12 × 106 cells/mL. These results suggest that the interaction between polyplexes and extracellular and intracellular vesicles plays a crucial role in the CDE, providing insights for the development of strategies to mitigate its impact.

3.
Biotechnol Adv ; 60: 108017, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35809763

RESUMO

One of the main challenges in the development of bioprocesses based on cell transient expression is the commonly reported reduction of cell specific productivity at increasing cell densities. This is generally known as the cell density effect (CDE). Many efforts have been devoted to understanding the cell metabolic implications to this phenomenon in an attempt to design operational strategies to overcome it. A comprehensive analysis of the main studies regarding the CDE is provided in this work to better define the elements comprising its cause and impact. Then, examples of methodologies and approaches employed to achieve successful transient expression at high cell densities (HCD) are thoroughly reviewed. A critical assessment of the limitations of the reported studies in the understanding of the CDE is presented, covering the leading hypothesis of the molecular implications. The overall analysis of previous work on CDE may offer useful insights for further research into manufacturing of biologics.


Assuntos
Produtos Biológicos , Animais , Contagem de Células
4.
Biotechnol Bioeng ; 118(4): 1649-1663, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33463716

RESUMO

HIV-1 Gag virus-like particles (VLPs) are promising candidates for the development of future vaccines. Recent viral outbreaks have manifested the need of robust vaccine production platforms able to adapt to new challenges while achieving mass production capacity. For the rapid production of VLPs, the method of transient gene expression (TGE) have proved highly efficient. Based on a previous characterization of the HEK293 cell line upon transient transfection using multiplexed quantitative proteomics, molecular production bottlenecks and metabolic pathways likely to be optimized were identified. In this study, these molecular components and metabolic pathways have been explored and modulated via transient metabolic engineering using approaches like design of experiments to fully exploit and optimize VLP production, transfection and budding efficiency. Upon overexpression of endosomal sorting complex required for transport accessory proteins like NEDD4L and CIT, VLP production increased 3.3 and 2.9-fold, respectively. Overexpression of glycosphingolipid precursor enzyme UGCG improved transfection efficiency by 17% and knocking-down the Gag-binding protein CNP improved 2.5-fold VLP specific productivity. Combining CNP inhibition and UGCG overexpression further improved budding efficiency by 37.3%. Modulating VLP production and accessory pathways like intracellular budding, demonstrated the potential of metabolic engineering to optimize and intensify the development of robust production platforms for future vaccines.


Assuntos
Vacinas contra a AIDS , HIV-1 , Engenharia Metabólica , Transfecção , Vacinas de Partículas Semelhantes a Vírus , Produtos do Gene gag do Vírus da Imunodeficiência Humana , Vacinas contra a AIDS/biossíntese , Vacinas contra a AIDS/genética , Células HEK293 , HIV-1/genética , HIV-1/metabolismo , Humanos , Vacinas de Partículas Semelhantes a Vírus/biossíntese , Vacinas de Partículas Semelhantes a Vírus/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/biossíntese , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...